
Advance Technologies; Automate the World.

Manual Rev. 2.02

Revision Date: January 5, 2009

Part No: 50-15057-1010

PCI-8253/56
DSP-based

3/6-Axis Analog
Motion Control Card
User’s Manual

Copyright 2009 ADLINK TECHNOLOGY INC.

All Rights Reserved.

The information in this document is subject to change without prior
notice in order to improve reliability, design, and function and does
not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, spe-
cial, incidental, or consequential damages arising out of the use or
inability to use the product or documentation, even if advised of
the possibility of such damages.

This document contains proprietary information protected by copy-
right. All rights are reserved. No part of this manual may be repro-
duced by any mechanical, electronic, or other means in any form
without prior written permission of the manufacturer.

Trademarks

NuDAQ, NuIPC, DAQBench are registered trademarks of ADLINK
TECHNOLOGY INC.

Product names mentioned herein are used for identification pur-
poses only and may be trademarks and/or registered trademarks
of their respective companies.

Getting Service from ADLINK
Customer Satisfaction is top priority for ADLINK Technology Inc.
Please contact us should you require any service or assistance.

ADLINK TECHNOLOGY INC.

Web Site: http://www.adlinktech.com

Sales & Service: Service@adlinktech.com

TEL: +886-2-82265877

FAX: +886-2-82265717

Address: 9F, No. 166, Jian Yi Road, Chungho City,

Taipei, 235 Taiwan

Please email or FAX this completed service form for prompt and
satisfactory service.

Company Information

Company/Organization

Contact Person

E-mail Address

Address

Country

TEL FAX:

Web Site

Product Information

Product Model

Environment
OS:
M/B: CPU:
Chipset: BIOS:

Please give a detailed description of the problem(s):

Table of Contents i

Table of Contents

List of Tables.. iv

List of Figures ... v

1 Introduction .. 1
1.1 Features... 5
1.2 Specifications... 7
1.3 Supported Software ... 11

Programming Library .. 11
MotionCreatorPro 2TM ... 11

1.4 Compatible Terminal Boards ... 11

2 Installation .. 13
2.1 Package Contents ... 13
2.2 PCI-8253/6 Outline Drawing .. 14
2.3 PCI-8253/6 Hardware Installation...................................... 16

Hardware Configuration .. 16
PCI Slot Selection ... 16
Installation Procedures ... 16
Troubleshooting .. 17

2.4 Software Driver Installation.. 18
2.5 SP1/SP2 Pin Assignments: Main Connector 19
2.6 (CB) SW1 Switch Setting for Card Index 21
2.7 Daughter Board Switch (DB) SW1..................................... 22
2.8 CN1 Pulsar Connector... 23
2.9 CN2/CN3 DSP Sychronous Signal Connector 23

3 Signal Connections.. 25
3.1 Analog Command Output Signals: AOUT 26

Single-ended Type Signal: AOUT+ 26
Differential Type Signals: AOUT+ / AOUT- 27

3.2 Analog Input Signals: AIN.. 28
3.3 Trigger Pulse Output Signals: TRG+, TRG- 29
3.4 Encoder Feedback Signals: EA, EB and EZ...................... 31
3.5 Origin Signal: ORG .. 34
3.6 End-Limit Signals: PEL and MEL....................................... 36
3.7 Zero Speed Signal: ZSP .. 38
3.8 Alarm Signal: ALM ... 39

ii Table of Contents

3.9 Servo ON Signal: SVON.. 40
3.10 General-purpose Digital Output Signals: EDO................... 41
3.11 General-purpose Digital Input Signals: EDI 42

4 Operation Theory .. 43
4.1 Classifications of Motion Controller.................................... 43

Analog Type Motion Control Interface 43
Pulse Type Motion Control Interface 44
Network Type Motion Control Interface 44
Software Real-time Motion Control Kernel 45
ADLINK Softmotion DSP .. 45
ASIC Motion Control Kernel .. 46
Comparison Table Of All Motion Control Types 46
PCI-8253/6’s Motion Controller Type 46

4.2 Single Motion ... 48
Single Axis Velocity Motion ... 48
Single Axis P-to-P Motion ... 50
Linear Interpolation ... 52
Circular Interpolation ... 60
Speed Override ... 62
Position Override .. 65

4.3 Home Move.. 68
4.4 Jogging .. 74
4.5 Point Table... 80

Point Table Construction .. 80
Point index .. 83
Point table execution .. 84

4.6 Motion Status and Related IO Monitoring 95
Position Control and Feedback 96
Velocity Feedback .. 97
Motion I/O Status .. 97
Motion Status .. 100

4.7 Driver Management ... 101
Servo On ... 101

4.8 Data Sampling ... 102
4.9 Interrupt Control ... 110
4.10 E-Gear ... 113
4.11 DSP-based Closed-loop Control...................................... 115

Closed-loop Control .. 115
PID Filter Plus Feed Forward Gain 116

Table of Contents iii

Gantry Mode ... 135
Closed-loop Gantry Mode ... 136

4.12 Position Compared and Trigger pulse ouput 137
Architecture ... 137
Encoder Channels .. 137
Index Input (EZ) .. 139
Trigger Pulse Width .. 140
Linear Function ... 140
FIFO Function ... 141
PWM & Mapping function ... 142
Position Comparison ... 142
Position Latch ... 143
Timer Function .. 143

5 MotionCreatorPro 2.. 145
5.1 Execute MotionCreatorPro 2 ... 145
5.2 About MotionCreatorPro 2 ... 145
5.3 MotionCreatorPro 2 Forms .. 146

Main Menu .. 146
Parameter Management ... 151
Single Movement .. 152
Home Return ... 154
Interpolation .. 155
General I/O Status .. 156
Position Compare and Trigger Functions 157

iv List of Tables

List of Tables

Table 1-1: Specifications .. 7
Table 1-2: Environmental Conditions 10
Table 2-1: SP1 Pin Assignment ... 19
Table 2-2: SP2 Pin Assignment ... 20
Table 2-3: SW1 Switch Settings .. 21
Table 2-4: CN1 Pin Assignment ... 23
Table 2-5: CN2/CN3 DSP Sychronous Signal Connector 23
Table 4-1: Axis Parameter Settings for ORG Home Moves 68
Table 4-2: Axis Parameter Settings for EZ Home Moves 72
Table 4-3: POINT_DATA Structure .. 81
Table 4-4: Motion IO Status Bit Definition 99
Table 4-5: Motion status definition table 100
Table 4-6: Sampling Parameters Definition Table 103
Table 4-7: Sampling Source Definition Table 104
Table 4-8: Interrupt Factor Table ... 111

List of Figures v

List of Figures

Figure 1-1: Block Diagram of the PCI-8253/6 2
Figure 1-2: Flowchart for Developing an Application 4
Figure 2-1: PCB Layout of the PCI-8253 14
Figure 2-2: PCB Layout of the PCI-8256 15

vi List of Figures

Introduction 1

1 Introduction
The PCI-8253/6 is a DSP-based 3/6-axis analog type motion con-
trol card with PCI interface. This motion control card leverages
ADLINK softmotion that offers comprehensive motion trajectory
functions.

ADLINK softmotion enables simplified utilization of complex
motion manipulation which involves jogging, point-to-point posi-
tioning, multiple axes synchronized motion, contouring, etc.
ADLINK offers motion kernel customization service to met your
specially requirement.

Comprehensive Features – The PCI-8253/6 offers many fea-
tures including faster encoder speeds, high speed position com-
parison and trigger pulse outputs, adjustable PID plus feed-
forward gain and axis parameter on-the-fly, non-volatile program
and data memory, and vast dedicated onboard I/O. Through use of
32-bit high-speed dual port RAM, the PCI-8253/6 allows for high-
speed servo control up to 20 million encoder counts per second.
The servo also provides update rates as low as 50 µs per axis.

This motion controller also provides the programmable accelera-
tion and deceleration to eliminate jerk and smooth velocity profile.
For each axes, individual unlimited point tables with 32 depth buf-
fers can realize seamless continuous movements. These tables
are also able to combine linear and arc segment.

Closed-loop Control with PID plus Feed Forward Gain – The
PCI-8253/6 uses closed-loop control architecture to ensure pre-
cise positioning and to control the position at anytime to minimize
position errors. PID plus feed-forward gain tuning in a closed-loop
system is very important on performance. The feed forward fea-
ture is a predictive type of control. To drive the error to zero fast
enough to maintain precise motion and make the computing and
react quickly, the feed forward control loop is pulsed with closed-
loop PID. In a typical feedback control system with an inner veloc-
ity and an outer position-control loop, velocity, and acceleration,
feed forward is added after the position loop to the velocity loop.
Predictive control depends on earlier conditions, thus the signal
has to bypass the position loop. In other words, the setpoint is
compared to the next step in the process rather than the output.

2 Introduction

Figure 1-1 shows the functional block diagram of the PCI-8253/6
card. It contains a DSP as a main chip. Around the DSP is motion
interface, a FPGA and some necessary devices for DSP such as
SDRAM and DPRAM.

Figure 1-1: Block Diagram of the PCI-8253/6

DSP
PCI

Bridge

Aux
I/O

 PEL
MEL
ORG
DIO

EA
EB

EZ

DPRAM

SDRAM

Flash
ROM

FPGA

Encoder

I/O

Isolation

A/D

D/A

P
C

I B
us

S
C

S
I 68

S
C

S
I 68

Trigger
Output

Introduction 3

MotionCreatorPro 2 is a Windows-based application develop-
ment software package included with the PCI-8253/6.
MotionCreatorPro 2 is useful for debugging a motion control sys-
tem during the design phase of a project. An on-screen display
lists all installed axes information and I/O signal status of the PCI-
8253/6. By using this utility, you can easy tune the axis parameter
servo gain (PID plus feed forward gain) reducing the effort
required for gain tuning. In addition, the sampling windows display
more accurate motion data analysis while integrating the axis
parameters and PID gain on-the-fly changes. This utility thus
enables the PCI-8253/6 to provide precise positioning control with
less effort.

Windows Programming Libraries are also provided for C++
compiler, Visual Basic and many other popular languages. Sample
programs are provided to illustrate the operations of the functions.

4 Introduction

Figure 1-2 illustrates a flow chart of the recommended process in
using this manual in developing an application. Refer to the
related chapters for details of each step.

Figure 1-2: Flowchart for Developing an Application

Hardware Installation
Jumper Setting

Wiring

Using MotionCreatorPro 2 to
Configure a System

System is
OK?

END

Chapter 2 & 3

Chapter 5

Using MotionCreatorPro 2
to Verify Operations Chapter 4 & 5

Using the Function Libraries to
Develop Applications

Yes

Introduction 5

1.1 Features

The following list summarizes the main features of the PCI-8253/6
motion control system.

 32-bit PCI bus, Rev. 2.2, 33 MHz

 On-board 250 MHz DSP

 3/6 axes of ±10 volts analog command for controlling servo
motors by differential command signals

 Maximum servo update rate is less than 300 µs for 6 axes

 Built-in PID with feed-forward gain closed loop control algo-
rithm - reducing the following error and make fast response
time

 Available with 3/6 encoders – providing up to 6 axes of
closed-loop control, support EA/EB and index interface

 Encoder feedback frequency up to 20 MHz

 Digital filter for encoder input to reduce noise disturbance

 1/2 channel up to 1 MHz high speed trigger pulse output for
PCI-8253/PCI-8256

 Programmable trigger pulse width from 0.3 us to 300 ms

 A/D inputs (3/6 channel, 14 bit, ±10V)

 Manual pulse generator interface; 1x, 10x, 100x, 1000x
amplification

 4-bit board ID for multiple board indexing

 One dedicated emergency input pin

 On-board 512kb flash ROM for motion kernel and non-vola-
tile data – PID parameters

 ADLINK softmotion provides comprehensive trajectory con-
trol functions and application functions

 Programmable interrupt source control to host PC

 Dedicated motion I/O for per axis

 High speed position latch function via ORG and Index sig-
nals

 General purpose I/O: 4DI/4DO for PCI-8253 and 8DI/8DO
for PCI-8256

 Watch dog timer for safety control

6 Introduction

 Support for up to 16 cards in one system

 Includes MotionCreatorPro 2TM suite of graphical installa-
tion, PID tuning, and data sampling for diagnostic programs

 Supports Windows® 2000/XP/Vista

Introduction 7

1.2 Specifications

Item Description

System

Bus Type for PCI board PCI Rev. 2.2, 33MHz

Bus width for PCI 32-bit

Bus Voltage 3.3V, 5V

Memory usage 2M x 32 bit

IRQ on PCI board Assigned by PCI controller

General
Specifications

Operating temperature 0°C to 55°C

Storage temperature -20°C to 80°C

Humidity 5 to 95%, non-condensing

Power Consumption

+3.3V @ 0.8 A typical

+5V @ 0.8 A typical

+/-12V @ 0.5 A typical

DSP

Type TI TMS320C6711D

Clock 250 MHz

DSP performance 1500 MFLOPS

Board
Interface

Major Connector
One SCSI VHDCI 68 P for PCI-8253

Two SCSI VHDCI 68 P for PCI-8256

Servo
Control

Maximum available axes 3/6 Axes for PCI-8253/6

Analog Output command ±10 volts, resolution: 16 bit

Analog Output signal type Differential / Single-end

Maximum Servo
update rate

150 µs PID-FF for PCI-8253

300 µs PID-FF for PCI-8256

PID (Kp, Ki and Kd) gains 0 to 32,767

Feed forward (Aff, Vff) gains 0 to 32,767

Velocity feedback (Kv) gain 0 to 32,767

Position range 32 bit

Velocity range 32 bit

Acceleration /
Deceleration range

32 bit

Encoder Input frequency 20 MHz @ 4x AB

Encoder Input Interface ±12 volts, TTL compatible

Encoder Filter Yes

Table 1-1: Specifications

8 Introduction

Dedicated I/O

Motion I/O
Plus / Minus End Limit for each axis

Zero-position for each axis

Driver I/O (per axis)

Servo ON

In-Position

Zero-speed

Alarm

Error counter clear

Others Pulser Input (A/B/Index phase)

Analog Input

Number of inputs Up to 6, multiplexed, single-ended

Input coupling DC

Voltage range
(programmable)

±10 V

Bandwidth 100 kHz

Resolution 14 bits, no missing codes

All ranges ±1 mV for ±10 V input

Maximum working voltage ±15 V

Analog outputs

Number of outputs Up to 6, differential

Output coupling DC

Voltage range
±5 V, ±10 V
(Gain programmable)

Output current ±50 mA (Typ.)

Resolution 16 bits, no missing codes

Monotonicity Guaranteed

Absolute accuracy ± 1.5LSB

Protection Short-circuit to ground

Settling Time 15 µs , full-scale step

General
purposed I/O

4 isolated DI/4 DO for PCI-8253

8 isolated DI/8 DO for PCI-8256

Item Description

Table 1-1: Specifications

Introduction 9

Motion
Functions

Motion velocity profile Trapezoidal & S-Curve

Single motion

Jog move

Point to Point motion

Position / Speed Override

Linear interpolation: up to 4 axes

2-axis Circular interpolation

Home move 1 home mode

Point table motion

Start / End motion list

Add linear trajectory

Add arc trajectory: 2 axes

Add Dwell

Start/Sop command

Motion status monitor
Motion IO status read/configure

Motion status

Synchronous Move 3 / 6 Axes for PCI-8253/PCI-8256

Application
Functions

Gantry function

E-Gear function

Data sampling

System error check Watchdog timer

Interrupt
During operation stop
During alarms, etc.

Possible to select conditions
where interrupt occurs

Yes

Trigger
Function

Type Differential

Number of outputs
Up to 4 (2 faster channels / 2 slower
channels, supports encoders 0 and 3)

Output low voltage 0. 5 V (Max.)

Output high voltage 2.5 V (Min.)

Polarity Programmable, active-high or active-low

Trigger output frequency
Faster: 1MHz
Slower: 25KHz

Min pulse width 200 ns (programmable pulse width)

Support compared method FIFO and Linear function

Buffer size 15 points per trigger channel

Item Description

Table 1-1: Specifications

10 Introduction

Environmental Conditions

Item Specification

Ambient TemperatureOperation 0 to 55°C

Ambient TemperatureStorage -20 to 75°C

Ambient Humidity Operation 10 to 90% RH, avoid condensation

Ambient Humidity Storage 10 to 90% RH, avoid condensation

Noise resistance
Noise voltage 1500 V.P.P, noise

frequency 25 to 60 Hz using noise simulator

Cooling method Self-cooling

Table 1-2: Environmental Conditions

Introduction 11

1.3 Supported Software

1.3.1 Programming Library

Windows 2000/XP/Vista DLLs are provided for PCI-8253/6 users
programming their own applications. These function libraries are
shipped with the board.

1.3.2 MotionCreatorPro 2TM

This Windows-based utility is used to setup cards, motors, and
systems. It can also aid in debugging hardware and software prob-
lems. It allows users to set I/O logic parameters to be loaded in
their own program. This product is also bundled with the card.

Refer to Chapter 5 for more details.

1.4 Compatible Terminal Boards

ADLINK provides the DIN-825-J3A for Mitsubishi J3A servo driver
I/O, such as alarm signals, zero-speed signals, analog monitor
singals, and general purpose digital input signals. ADLINK also
provides a general-purpose terminal board for wiring: the DIN-
68S.

12 Introduction

Installation 13

2 Installation
This chapter describes how to install the PCI-8253/6. Please fol-
low these steps below:

 Check what you have (section 2.1)

 Check the PCB (section 2.2)

 Install the hardware (section 2.3)

 Install the software driver (section 2.4)

 Understand the I/O signal connections (chapter 3) and their
operation (chapter 4)

 Understand the connector pin assignments (the remaining
sections) and wiring the connections

2.1 Package Contents

In addition to this User’s Guide, the package also includes the fol-
lowing items:

 PCI-8253/6: DSP-based 3/6-Axis Analog
 Motion Control Card

 ADLINK All-in-one Compact Disc

The terminal board is an optional accessory. This would not be
included in PCI-8253/6 package.

If any of these items are missing or damaged, contact the dealer
from whom you purchased the product. Save the shipping materi-
als and carton for future shipment or storage.

14 Installation

2.2 PCI-8253/6 Outline Drawing

Figure 2-1: PCB Layout of the PCI-8253

SP1: Main signal connector (SCSI VHDCI 68 Pin)

CN2/CN3: DSP synchronous signal connector (4-pin)

CN1: Pulsar signal connector (4-pin)

(CB) SW1: DIP switch for card index selection (0-15)

(DB) SW1: DIP switch for differential/single-ended type of analog
output signal selection

CN3/CN2

SP1

(CB) SW1

CN1

(DB) SW1

JP3

Installation 15

Figure 2-2: PCB Layout of the PCI-8256

SP1/SP2: Main signal connector (SCSI VHDCI 68-pin)

CN2/CN3: DSP synchronous signal connector (4-pin)

CN1: Pulsar signal connector (4-pin)

(CB) SW1: DIP switch for card index selection (0-15)

(DB) SW1: DIP switch for differential/single-ended type of analog
output signal selection

SP2

CN3/CN2 CN1

(CB) SW1

(DB) SW1

JP3/JP4

185.00

186.84
10

0.
3
3

12
6.
3
5

DAUGHTER BOARD CARRIER BOARD

CN1

CN2

16 Installation

2.3 PCI-8253/6 Hardware Installation

2.3.1 Hardware Configuration

The PCI-8253/6 is fully Plug and Play compliant. Therefore, mem-
ory allocation (I/O port locations) and the IRQ channel are
assigned by the system BIOS. The address assignment is done
on a board-by-board basis for all PCI cards in the system.

2.3.2 PCI Slot Selection

Your computer system may have both PCI and ISA slots. Do not
force the PCI card into a PC/AT slot. The PCI-8253/6 can be used
in any PCI slot.

2.3.3 Installation Procedures

1. Read through this manual and setup the jumper accord-
ing to your application

2. Turn off your computer. Turn off all accessories (printer,
modem, monitor, etc.) connected to computer. Remove
the cover from your computer.

3. Select a 32-bit PCI expansion slot. PCI slots are shorter
than ISA or EISA slots and are usually white or ivory.

4. Before handling the PCI-8253/6, discharge any static
buildup on your body by touching the metal case of the
computer. Hold the edge of the card and do not touch
the components.

5. Position the board into the PCI slot you have selected.

6. Secure the card in place at the rear panel of the system
unit using screws removed from the slot.

Installation 17

2.3.4 Troubleshooting

If your system doesn’t boot or if you experience erratic operation
with your PCI board in place, it’s most likely caused by an interrupt
conflict (possibly an incorrect ISA setup). Once determined that
the problem is more than a simple oversight, the general solution,
is to consult the BIOS documentation that comes with your sys-
tem.

Check the control panel of the Windows system if the card is listed
by the system. If not, check the PCI settings in the BIOS or use
another PCI slot.

18 Installation

2.4 Software Driver Installation

PCI-8253/6:

1. Autorun the ADLINK All-In-One CD. Choose Driver
Installation -> Motion Control -> PCI-8253/6

2. Follow the procedures of the installer.

3. After setup installation is completed, restart windows.

Suggestion: Please download the latest software from ADLINK
website if necessary.

Installation 19

2.5 SP1/SP2 Pin Assignments: Main Connector

SP1

No. Name I/O Function of Axis No. Name I/O Function of Axis

1 AOUT1+ O Analog output (+),(1) 35 AOUT1- O Analog output (-),(1)

2 AOUT2+ O Analog output (+),(2) 36 AOUT2- O Analog output (-),(2)

3 AOUT3+ O Analog output (+),(3) 37 AOUT3- O Analog output (-),(3)

4 AGND SG Analog ground 38 AGND SG Analog ground

5 AIN1 I Analog input, (1) 39 AGND SG Analog ground

6 AIN2 I Analog input, (2) 40 Rsv. - Reserved

7 AIN3 I Analog input, (3) 41 Rsv. - Reserved

8 EA1+ I Encoder A-phase (+),(1) 42 EA1- I Encoder A-phase (-),(1)

9 EB1+ I Encoder B-phase (+),(1) 43 EB1- I Encoder B-phase (-),(1)

10 EZ1+ I Encoder Z-phase (+),(1) 44 EZ1- I Encoder Z-phase (-),(1)

11 ALM1 I Servo alarm,(1) 45 ORG1 I Zero-Position, (1)

12 SVON1 O Servo-ON, (1) 46 PEL1 I Positive limit, (1)

13 ZSP1 I ZeroSpeed 1 47 MEL1 I Negative limit, (1)

14 TRG1 O Trigger Output, (+)(1) 48 TRG1- O Trigger Output, (-)(1)

15 TRG2+ O Trigger Output, (+)(2) 49 TRG2- O Trigger Output, (-)(2)

16 EA2+ I Encoder A-phase (+),(2) 50 EA2- I Encoder A-phase (-),(2)

17 EB2+ I Encoder B-phase (+),(2) 51 EB2- I Encoder B-phase (-),(2)

18 EZ2+ I Encoder Z-phase (+),(2) 52 EZ2- I Encoder Z-phase (-),(2)

19 DOCOM - Digital output common 53 DICOM - Digital input common

20 ALM2 I Servo alarm, (2) 54 ORG2 I Zero-Position, (2)

21 SVON2 O Servo-ON, (2) 55 PEL2 I Positive limit, (2)

22 ZSP2 I ZeroSpeed 2 56 MEL2 I Negative limit, (2)

23 EA3+ I Encoder A-phase (+),(3) 57 EA3- I Encoder A-phase (-),(3)

24 EB3+ I Encoder B-phase (+),(3) 58 EB3- I Encoder B-phase (-),(3)

25 EZ3+ I Encoder Z-phase (+),(3) 59 EZ3- I Encoder Z-phase (-),(3)

26 ALM3 I Servo alarm,(3) 60 ORG3 I Zero-Position, (3)

27 SVON3 O Servo-ON, (3) 61 PEL3 I Positive limit, (3)

28 ZSP3 I ZeroSpeed 3 62 MEL3 I Negative limit, (3)

29 DOCOM - Digital output common 63 IEMG I Emergency Stop

30 DOCOM - Digital output common 64 DICOM - Digital input common

31 EDO1 O Digital Output, (1) 65 EDI1 I Digital Input, (1)

32 EDO2 O Digital Output, (2) 66 EDI2 I Digital Input, (2)

33 EDO3 O Digital Output, (3) 67 EDI3 I Digital Input, (3)

34 EDO4 O Digital Output, (4) 68 EDI4 I Digital Input, (4)

Table 2-1: SP1 Pin Assignment

20 Installation

SP2

No. Name I/O Function of Axis No. Name I/O Function of Axis

1 AOUT4+ O Analog output (+),(4) 35 AOUT4- O Analog output (-),(4)

2 AOUT5+ O Analog output (+),(5) 36 AOUT5- O Analog output (-),(5)

3 AOUT6+ O Analog output (+),(6) 37 AOUT6- O Analog output (-),(6)

4 AGND SG Analog ground 38 AGND SG Analog ground

5 AIN4 I Analog input, (4) 39 AGND SG Analog ground

6 AIN5 I Analog input, (5) 40 Rsv. - Reserved

7 AIN6 I Analog input, (6) 41 Rsv. - Reserved

8 EA4+ I Encoder A-phase (+),(4) 42 EA4- I Encoder A-phase (-),(4)

9 EB4+ I Encoder B-phase (+),(4) 43 EB4- I Encoder B-phase (-),(4)

10 EZ4+ I Encoder Z-phase (+),(4) 44 EZ4- I Encoder Z-phase (-),(4)

11 ALM4 I Servo alarm, (4) 45 ORG4 I Zero-Position, (4)

12 SVON4 O Servo-ON, (4) 46 PEL4 I Positive limit, (4)

13 ZSP4 I ZeroSpeed 4 47 MEL4 I Negative limit, (4)

14
TRG3+ /
OUT2+

O
Trigger Output, (+)(3) /

Pulse Output, (+)(2)
48

TRG3- /
OUT2-

O
Trigger Output, (-)(3) /

Pulse Output, (-)(2)

15
TRG4+ /
DIR2+

O
Trigger Output, (+)(4) /

Pulse DIR., (+)(2)
49

TRG4- /
DIR2-

O
Trigger Output, (-)(4) /

Pulse DIR., (-)(2)

16 EA5+ I Encoder A-phase (+),(5) 50 EA5- I Encoder A-phase (-),(5)

17 EB5+ I Encoder B-phase (+),(5) 51 EB5- I Encoder B-phase (-),(5)

18 EZ5+ I Encoder Z-phase (+),(5) 52 EZ5 I Encoder Z-phase (-),(5)

19 DOCOM - Digital output common 53 DICOM - Digital input common

20 ALM5 I Servo alarm,(5) 54 ORG5 I Zero-Position, (5)

21 SVON5 O Servo-ON, (5) 55 PEL5 I Positive limit, (5)

22 ZSP5 I ZeroSpeed 5 56 MEL5 I Negative limit, (5)

23 EA6+ I Encoder A-phase (+),(6) 57 EA6- I Encoder A-phase (-),(6)

24 EB6+ I Encoder B-phase (+),(6) 58 EB6- I Encoder B-phase (-),(6)

25 EZ6+ I Encoder Z-phase (+),(6) 59 EZ6- I Encoder Z-phase (-),(6)

26 ALM6 I Servo alarm,(6) 60 ORG6 I Zero-Position, (6)

27 SVON6 O Servo-ON, (6) 61 PEL6 I Positive limit, (6)

28 ZSP6 I ZeroSpeed 6 62 MEL6 I Negative limit, (6)

29 DOCOM - Digital output common 63 Rsv. - Reserved

30 DOCOM - Digital output common 64 DICOM - Digital input common

31 EDO5 O Digital Output, (5) 65 EDI5 I Digital Input, (5)

32 EDO6 O Digital Output, (6) 66 EDI6 I Digital Input, (6)

33 EDO7 O Digital Output, (7) 67 EDI7 I Digital Input, (7)

34 EDO8 O Digital Output, (8) 68 EDI8 I Digital Input, (8)

Table 2-2: SP2 Pin Assignment

Installation 21

2.6 (CB) SW1 Switch Setting for Card Index

The (CB) SW1 switch is used to set the card index. For example, if
you turn 0 to ON and others are OFF. It means the card index as 0.
The value is from 0 to 15. Refer to the following table for details.

Card ID
Switch Setting

(ON=0)

0 1111

1 1110

2 1101

3 1100

4 1011

5 1010

6 1001

7 1000

8 0111

9 0110

10 0101

11 0100

12 0011

13 0010

14 0001

15 0000

Table 2-3: SW1 Switch Settings

1 2 3 4

ON

22 Installation

2.7 Daughter Board Switch (DB) SW1

(DB) SW1 is defined to select differential or single end function for
“analog output”.

(DB) SW1 Switch Diagram

Single-ended signal

Differential signal

1 2 3 4 5 6

ON

Installation 23

2.8 CN1 Pulsar Connector

The CN1 connector is used to connect to a manual pluse genera-
tor.

CN1 Pin Assignment

2.9 CN2/CN3 DSP Sychronous Signal Connector

CN2/CN3 Pin Assignment

Pin No Signal Name

1 PDICOM

2 IPA

3 IPB

4 PDICOM

Table 2-4: CN1 Pin Assignment

Pin No Signal Name

1 SYN_PWR

2 STP

3 STA

4 DGND

Table 2-5: CN2/CN3 DSP Sychronous Signal Connector

24 Installation

Signal Connections 25

3 Signal Connections
Signal connections of all I/O’s are described in this chapter. Refer
to the contents of this chapter before wiring any cable between the
PCI-8253/6 and any motor driver.

This chapter contains the following sections:

Section 3.1 Analog Command Output Signals: AOUT

Section 3.2 Analog Input Signals: AIN

Section 3.3 Trigger Pulse Output Signals: TRG+, TRG-

Section 3.4 Encoder Feedback Signals: EA, EB and EZ

Section 3.5 Origin Signal: ORG

Section 3.6 End-Limit Signals: PEL and MEL

Section 3.7 Zero Speed Signal: ZSP

Section 3.8 Alarm Signal: ALM

Section 3.9 Servo ON Signal: SVON

Section 3.10 General-purpose Digital Output Signals: EDO

Section 3.11 General-purpose Digital Input Signals: EDI

26 Signal Connections

3.1 Analog Command Output Signals: AOUT

3.1.1 Single-ended Type Signal: AOUT+

There are 3/6 axes analog output signals on the PCI-8253/6. For
each axis, the OUT+ signal is used to drive the voltage command
and indicate the direction. The AOUT+ signals can also decide
motor forward/backward direction by plus/minus voltage out. The
Analog Output can drive between +10V to -10V and its resolution
guarantees to ±1 mV. The following table shows all pulse output
signals on SP1 and SP2.

The following wiring diagram is for Analog out signals of axis.

SP1 Pin No. Signal Name Description Axis #

1 AOUT1+ Analog Out Signal 1

2 AOUT2+ Analog Out Signal 2

3 AOUT3+ Analog Out Signal 3

SP2 Pin No. Signal Name Description Axis #

1 AOUT4+ Analog Out Signal 4

2 AOUT5+ Analog Out Signal 5

3 AOUT6+ Analog Out Signal 6

SP1/SP2

(Outside the PCI-8253/6)

Signal Connections 27

3.1.2 Differential Type Signals: AOUT+ / AOUT-

There are 3/6 axes differential analog output signals on the PCI-
8253/6. For each axis, the AOUT signal is used to drive the volt-
age command and indicate the direction. The AOUT signals can
also decide motor forward/backward direction by plus/minus volt-
age output. The analog output can drive between +10V to -10V
and its resolution guarantees to 1mV. The following table shows
all analog output signals in differential type on SP1 and SP2.

The following wiring diagram is for analog out signals of the axis.

SP1 Pin No. Signal Name Description Axis #

1 AOUT1+ Analog Out Signal + 1

35 AOUT1- Analog Out Signal - 1

2 AOUT2+ Analog Out Signal + 2

36 AOUT2- Analog Out Signal - 2

3 AOUT3+ Analog Out Signal + 3

37 AOUT3- Analog Out Signal - 3

SP2 Pin No. Signal Name Description Axis #

1 AOUT4+ Analog Out Signal + 4

35 AOUT4- Analog Out Signal - 4

2 AOUT5+ Analog Out Signal + 5

36 AOUT5- Analog Out Signal - 5

3 AOUT6+ Analog Out Signal + 6

37 AOUT6- Analog Out Signal - 6

+

-

SP1/SP2

GND

AOUT+

AOUT-
D/A
Converter

+

-

Ref
In

28 Signal Connections

3.2 Analog Input Signals: AIN

There are 3/6 axes analog Output signals on the PCI-8253/6. For
each axis, an AIN signal is used to receive the feedback voltage
direction. The Analog Input can indicate the voltage level between
+10V to -10V and its resolution guarantees 14 bits with no missing
code. The following table shows all pulse output signals on SP1
and SP2.

The following wiring diagram is for Analog out signals of axis.

SP1 Pin No. Signal Name Description

1 AIN1 Analog Input Signal

2 AIN2 Analog Input Signal

3 AIN3 Analog Input Signal

SP2 Pin No. Signal Name Description

1 AIN4 Analog Input Signal

2 AIN5 Analog Input Signal

3 AIN6 Analog Input Signal

SP1/SP2

(Outside the PCI-8253/6)

Signal Connections 29

3.3 Trigger Pulse Output Signals: TRG+, TRG-

There are 2/4 axes trigger output signals on the PCI-8253/6. For
each axis, one pair of TRG differential signals are used to transmit
the trigger singal with pulse train type. Each signal consists of a
pair of differential signals. For example, TRG1 consists of TRG1+
and TRG1- signals. The following table shows all trigger output
signals on SP1 and SP2.

The default setting of TRG+ and TRG- is set to differential line
driver mode.

SP1 Pin No. Signal Name Description Axis #

14 TRG1+ Trigger signal (+) 1

48 TRG1- Trigger signal (-) 1

15 TRG2+ Trigger signal (+) 2

49 TRG2- Trigger signal (-) 2

SP2 Pin No. Signal Name Description Axis #

14 TRG3+ Trigger signal (+) 3

48 TRG3- Trigger signal (-) 3

15 TRG4+ Trigger signal (+) 4

49 TRG4- Trigger signal (-) 4

30 Signal Connections

The following wiring diagram is for TRG+ and TRG- signals of the
axis.

Non-differential type wiring example:

Suggest Usage: See the following figure. Choose TRG+ to con-
nect to driver’s TRG

Warning: The sink current must not exceed 20mA or the
26LS31 will be damaged!

 SP1/SP2

(Outside the PCI-8253/6)

GND

OUT-/DIR-

OUT+/DIR+26LS31

TRG-
TRG+

TRG

GND

OUT/DIR

SP1/SP2

(PCI-8253/6 Outside)

VDD
 TRG+

TRG-

EXGND

470 Ohm

+5V

Inside Motion Card Inside Motor Driver

Signal Connections 31

3.4 Encoder Feedback Signals: EA, EB and EZ

The encoder feedback signals include EA, EB, and EZ. Every axis
has six pins for three differential pairs of phase-A (EA), phase-B
(EB), and index (EZ) inputs. EA and EB are used for position
counting, and EZ is used for zero position indexing. All relative sig-
nal names, pin numbers, and axis numbers are shown in the fol-
lowing tables:

SP1

SP1 Pin No Signal Name Axis # SP1 Pin No Signal Name Axis #

7 EA1+ 1 41 EA1- 1

8 EB1+ 1 42 EB1- 1

16 EA2+ 2 50 EA2- 2

17 EB2+ 2 51 EB2- 2

23 EA3+ 3 57 EA3- 3

24 EB3+ 3 58 EB3- 3

SP1 Pin No Signal Name Axis # SP1 Pin No Signal Name Axis #

9 EZ1+ 1 43 EZ1- 1

18 EZ2+ 2 52 EZ2- 2

25 EZ3+ 3 59 EZ3- 3

32 Signal Connections

SP2

The input circuit of the EA, EB, and EZ signals is shown as fol-
lows:

Please note that the voltage across each differential pair of
encoder input signals (EA+, EA-), (EB+, EB-), and (EZ+, EZ-)
have ±7V common mode range. Therefore, the output current
must be observed when connecting to the encoder feedback or
motor driver feedback as not to over drive the source. The differ-
ential signal pairs are converted to digital signals EA, EB, and EZ;
then retrieve from the DSP side.

Below are examples of connecting the input signals with an exter-
nal circuit. The input circuit can be connected to an encoder or
motor driver if it is equipped with: (1) a differential line driver or (2)
an open collector output.

SP2 Pin No Signal Name Axis # SP2 Pin No Signal Name Axis #

7 EA4+ 4 41 EA4- 4

8 EB4+ 4 42 EB4- 4

16 EA5+ 5 50 EA5- 5

17 EB5+ 5 51 EB5- 5

23 EA6+ 6 57 EA6- 6

24 EB6+ 6 58 EB6- 6

SP2 Pin No Signal Name Axis # SP2 Pin No Signal Name Axis #

9 EZ4+ 4 43 EZ4- 4

18 EZ5+ 5 52 EZ5- 5

25 EZ6+ 6 59 EZ6- 6

Inside 8253/6

EA-

SP1/SP2

EB+
EA+

EA, EB, EZ

EB-
EZ-

GND EZ+

GND

Signal Connections 33

Connection to Line Driver Output

To drive the PCI-8253/6 encoder input, the driver output must pro-
vide at least 0.2V across the differential pairs. The case grounds
of both sides must be tied together. The maximum frequency is
5Mhz or more depends on wiring distance and signal conditioning.

For more operation information on the encoder feedback signals,
refer to section 4.4.

 External Encoder / Driver
With line driver output Inside 8253/56

A,B phase signals
Index signal

EA+,EB+,EZ+

EA-, EB-, EZ-

EGND GND

34 Signal Connections

3.5 Origin Signal: ORG

The origin signals (ORG1~ORG6) are used as input signals for the
origin of the mechanism. The following table lists signal names,
pin numbers, and axis numbers:

The input circuit of the ORG signals are shown below. Usually, a
limit switch is used to indicate the origin on one axis. The specifi-
cations of the limit switch should have contact capacity of +24V @
6mA minimum. An internal filter circuit is used to filter out any high
frequency spikes, which may cause errors in the operation

SP1 Pin No Signal Name Axis # SP2 Pin No Signal Name Axis #

45 ORG1 1 45 ORG4 4

54 ORG2 2 54 ORG5 5

60 ORG3 3 60 ORG6 6

Signal Connections 35

.

When the motion controller is operated in the home return mode,
the ORG signal is used to inhibit the control output signals (OUT
and DIR).

E24V

1V max.

To FPGA

OR
G

4.7K

EGND

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC
Sink Type

EGND

1V max.

To FPGA

OR
G

4.7K

E24V

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC
Source

DICO

DICO

36 Signal Connections

3.6 End-Limit Signals: PEL and MEL

There are two end-limit signals PEL and MEL for each axis. PEL
indicates the end limit signal is in the plus direction and MEL indi-
cates the end limit signal is in the minus direction. The signal
names, pin numbers, and axis numbers are shown in the table
below:

SP1 Pin No Signal Name Axis # SP1 Pin No Signal Name Axis #

46 PEL1 1 47 MEL1 1

55 PEL2 2 56 MEL2 2

61 PEL3 3 62 MEL3 3

SP2 Pin No Signal Name Axis # SP2 Pin No Signal Name Axis #

46 PEL4 4 47 MEL4 4

55 PEL5 5 56 MEL5 5

61 PEL6 6 62 MEL6 6

Signal Connections 37

A circuit diagram is shown below. The external limit switch should
have a contact capacity of +24V @ 6mA minimum. Either ‘A-type’
(normal open) contact or ‘B-type’ (normal closed) contact switches
can be used.

E24V

1V max.

To FPGA

ME
L

4.7K

EGND

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC
Sink Type

EGND

1V max.

To FPGA

ME
L

4.7K

E24V

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC
Source Type

DICO

DICO

PEL

PEL

38 Signal Connections

3.7 Zero Speed Signal: ZSP

The zero speed signal ZSP from a servomotor driver indicates
zero speed. It is used to set the input range of the zero speed sig-
nals. The signal names, pin numbers, and axis numbers are
shown in the table below:

The input circuits of the INP signals are shown in the diagram
below:

The in-position signal is usually generated by the servomotor
driver and is ordinarily an open collector output signal. An external
circuit must provide at least 6mA current sink capabilities to drive
the ZSP signal.

SP1 Pin No Signal Name Axis # SP2 Pin No Signal Name Axis #

13 ZSP1 1 13 ZSP4 4

22 ZSP2 2 22 ZSP5 5

28 ZSP3 3 28 ZSP6 6

Sink Type

E24V

1V Max.

To FPGA

ZSP

4.7K

EGND

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC

Source Type

E24V

1V Max.

To FPGA

ZSP

4.7K
EGND

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC

Signal Connections 39

3.8 Alarm Signal: ALM

The alarm signal ALM is used to indicate the alarm status from the
servo driver. The signal names, pin numbers, and axis numbers
are shown in the table below:

The input circuits of the ALM signals are shown in the diagram
below:

SP1 Pin No Signal Name Axis # SP2 Pin No Signal Name Axis #

11 ALM1 1 11 ALM4 4

20 ALM2 2 20 ALM5 5

26 ALM3 3 26 ALM6 6

 Sink Type

E24V

1V Max.

To FPGA

ALM

4.7K

EGND

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC

Source Type

E24V

1V Max.

To FPGA

ALM

4.7K
EGND

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC

40 Signal Connections

3.9 Servo ON Signal: SVON

The SVON signal can be used as a servomotor-on control or gen-
eral purpose output signal. The signal names, pin numbers, and
axis numbers are shown in the following table:

The output circuit for the SVON signal is shown below:

SP1 Pin No Signal Name Axis # SP2 Pin No Signal Name Axis #

12 SVON1 1 12 SVON4 4

21 SVON2 2 21 SVON5 5

27 SVON3 3 27 SVON6 6

35V @ 50mA Maximum
SVON

From FPGA DOCOM /
AGND

Inside 8253/6 SP1/SP2
VCC

PS2802

Signal Connections 41

3.10 General-purpose Digital Output Signals: EDO

The PCI-8253/6 provides 4/8 general-purpose output channels:
EDO1 to EDO8. These general-purpose output channels are
located on SP1 and SP2. The signal names, pin numbers, and
axis numbers are shown below:

The EDO signal wiring diagram is shown below:

SP1 Pin No Signal Name SP2 Pin No Signal Name

31 EDO1 31 EDO5

32 EDO2 32 EDO6

33 EDO3 33 EDO7

34 EDO4 34 EDO8

35V @ 50mA Maximum
EDO

From FPGA
DOCOM

Inside 8253/6 SP1/SP2
VCC

PS2802

42 Signal Connections

3.11 General-purpose Digital Input Signals: EDI

The PCI-8253/6 provides 4/8 general-purpose input channels:
EDI1 to EDI8. These general-purpose input channels are located
on SP1 and SP2. The signal names, pin numbers, and axis num-
bers are shown below:

The following wiring diagram is of the EDI signal:

SP1 Pin No Signal Name SP2 Pin No Signal Name

65 EDI1 65 EDI5

66 EDI2 66 EDI6

67 EDI3 67 EDI7

68 EDI4 68 EDI8

 Sink Type

E24V

1V Max.

To FPGA

EDI

4.7K

EGND

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC

Source Type

E24V

1V Max.

To FPGA

EDI

4.7K
EGND

Inside 8253/6 SP1/SP2

 Switch

DGND PS2805

VCC

Operation Theory 43

4 Operation Theory
This chapter describes the detail operation of the motion controller
card. Contents of the following sections are as follows:

Section 4.1 Classifications of Motion Controller

Section 4.2 Single Motion

Section 4.3 Home Move

Section 4.4 Jogging

Section 4.5 Point Table

Section 4.6 Motion Status and Related IO Monitoring

Section 4.7 Driver Management

Section 4.8 Data Sampling

Section 4.9 Interrupt Control

Section 4.10 E-Gear

Section 4.11 DSP-based Closed-loop Control

Section 4.12 Position Compared and Trigger pulse ouput

4.1 Classifications of Motion Controller

When motor/stepper control first started, motion control was
widely discussed instead of motor control. Motor control was sepa-
rated into two layers: motor control and motion control. Motor con-
trol relates to PWM, power stage, closed loop, hall sensors, vector
space, etc. Motion control relates to speed profile generating, tra-
jectory following, multi-axes synchronization, and coordinating.

4.1.1 Analog Type Motion Control Interface

The interfaces between motion and motor control are changing
rapidly. Early on, a voltage signal was used as a command to the
motor controller. The amplitude of the signal shows how fast a
motor is rotating and the time duration of the voltage change
shows the speed of the motor acceleration. The voltage signal as
a command to the motor driver is called “analog” motion controller.
It is much easier to integrate into an analog circuit of motor con-
troller; however noise is sometimes a big problem for this type of

44 Operation Theory

motion control. Also, to do positioning control of a motor, the ana-
log motion controller must have a feedback signal with position
information and use a closed loop control algorithm to make it pos-
sible. This increases the complexity of motion control and is not
easy to use for a beginner.

4.1.2 Pulse Type Motion Control Interface

The second interface of motion and motor control is a pulse train
type. As a digital world trend, pulse trains represent a new concept
to motion control. The number of pulses illustrate how many steps
a motor rotates, and the frequency of pulses illustrate how fast a
motor runs. The time duration of frequency changes represent the
acceleration rate of a motor. This interface makes a servo or step-
per motor easier than an analog type for positioning applications,
because it allows motion and motor control to be separated easier.

Each interface provides gains tuning. For analog position control-
lers, the control loops are built inside and gains are tuned from the
controller. For pulse type position controllers, the control loops are
built outside on the motor drivers and the gains are tuned on the
drivers.

For operating more than one axis, motion control seems more
important than motor control. In industrial applications, reliability is
a very important factor. Motor driver vendors make good perfor-
mance products and motion controller vendors make a powerful
variety of motion software. Integrating the two products make this
ideal.

4.1.3 Network Type Motion Control Interface

Recently, a new control interface was introduced--a network
motion controller. In this new interface the command between
motor driver and motion controller is neither an analog nor a pulse
signal, it is a network packet containing position and motor infor-
mation. This controller is more reliable than previous controllers
because it is digitized and packetized. Because a motion controller
must be real-time, the narrow must have real-time capacity at a
cycle time below 1 mini-second. This means that non-commercial
networks cannot do this job. A specific network is required, such

Operation Theory 45

as Mitsubishi SSCNET. The network may also be built with fiber
optics to increase communication reliability.

4.1.4 Software Real-time Motion Control Kernel

For motion control kernel, there are three ways to accomplish it:
DSP, ASIC, and software real-time.

A motion control system needs an absolute real-time control cycle.
It order for the motor to run smoothly the calculation on the con-
troller must provide a control data. The PC’s computing power is
often used to do this. A feedback counter card can simply be used
and a voltage output or pulse output card to make it. This method
is low cost but required extensive software effort. A real-time soft-
ware is used to ensure real-time performance. This method
increases the complexity of the system, but is the most flexible for
professional motion control designers. Most of these methods are
on NC machines.

4.1.5 ADLINK Softmotion DSP

ADLINK softmotion was implemented inside a high performance
DSP that solves real-time software problem on computer and
offers variety application functions to benefit you to realize your
design conveniently. A DSP is a micro-processer itself and all
motion control calculations can be performed on it. There is no
real-time software problem because DSP has its own OS to
arrange all the procedures. There is no interruption from other
inputs or context-switching problems as seen in a Windows-based
computer. Although it has such a perfect performance on real-time
requirements, its calculation speed is not as fast as PC’s CPU at
this age. Besides, the software interfacing between DSP based
controller’s vendors and users are not easy to use. Some control-
ler vendors provide some kind of assembly languages for users to
learn and some controller vendors provide only a handshake doc-
uments for users to use. Both ways are not easy to use. A DSP
based controller providse a better way for machine makers to
develop they applications over software kernels. More features of
ADLINK softmotion are described in Section 4.1.8.

46 Operation Theory

4.1.6 ASIC Motion Control Kernel

An ASIC motion control kernel falls between software kernel and
DSP kernel in terms of difficulty. All motion functions are done via
the ASIC elimination all real-time problems. The ASIC requires
parameters to be preset for motion control. ASIC motion control
separates all system integration problems into 4 parts: motor
driver’s performance, ASIC outputting profile, vendor’s software
parameters to the ASIC, and users’ command to vendor’s soft-
ware. It makes motion controller co-operated more smoothly
between devices.

4.1.7 Comparison Table Of All Motion Control Types

**DSP or software real-time OS is needed

4.1.8 PCI-8253/6’s Motion Controller Type

The PCI-8253/6 is a DSP based analog type motion controller.
This card was made into five blocks: on-board DSP, ADLINK soft-
motion, FPGA for the interface, PCI card, and software motion
library. The ADLINK softmotion easily utilizes for complex motion
manipulation which involving jogging, point-to-point positioning,
multiple axes synchronized motion, contouring, high-speed posi-
tion comparison and so on. PCI-8253/6 also offers motion kernel
customization service to met your requirement. Providing on faster
encoder speeds, high speed position comparison, adjustable PID
plus feed-forward closed-loop control algorithm and large size, 32-
bit high-speed dual port ram usage, the PCI-8253/6 allows for
high-speed servo control up to 20 million encoder counter per sec-
ond and high-speed trigger pulse output up to 1 MHz. Other
advantages of ADLINK softmotion technology is the servo update
rates as low as 50 µs per axis.

Analog Pulses Network

Price **High Low **Normal

Signal Quality
(refer to distance)

Good Good Best

Maintenance Middle Fair Easy

Operation Theory 47

The PCI-8253/6 also provides the programmable acceleration and
deceleration to eliminate jerk and smooth velocity profile. For each
axis, individual unlimited point table with 32 depth buffers can real-
ize the seamless continuous move conveniently, which is also able
to combine linear and arc segment.

The ADLINK softmotion has many kinds of choices for different
application. It can be downloaded and updated on the PC side.
Different DSP kernel has special motion functions. For standard
package of PCI-8253/6, it has the most common motion control
features inside. For others, please order the specific kernel as
needed.

48 Operation Theory

4.2 Single Motion

In this section, single motion functions are discussed. Single
motion means the motion is commanded by one function call only.
For example, APS_relative_move(), this function will allow an
axis to move a certain distance with a specified speed and other
motion parameter, such as accel/decel time and so on.

In this manual, in order to reduce and manage the programming of
motion operation, therefore, user has to config whole motion type
and parameter via function APS_set_axis_param() in arrear of
motion operation firstly.

Single motion functions can be categorized into the following types
according to their functionality.

 Section 4.2.1: Single Axis Velocity Motion

 Section 4.2.2: Single Axis P-to-P Motion

 Section 4.2.3: Linear Interpolation

 Section 4.2.4: Circular Interpolation

 Section 4.2.5: Speed Override

 Section 4.2.6: Position Override

4.2.1 Single Axis Velocity Motion

Veloctiy mode means the motion command is continuously output-
ting until a stop command is issued. The motor will run without a
target position or desired distance unless it was stopped by other
reasons. The output command profile will accelerate from a start-
ing velocity to a specified maximum velocity. It can be follow a lin-
ear or S-curve acceleration shape. The command output rate is
kept at maximum velocity until another velocity command over-
rided or a stop command issued. The velocity could be overrided
by a new speed setting.

In this section, the following functions are discussed.

APS_set_axis_param(Axis_ID, AXS_Param_No,
AXS_Param)

APS_velocity_move(Axis_ID, Max_speed)

The single axis velocity motion function will allow the axis to accel-
erate from a starting velocity, ‘PRA_VS’, to a specified constant

Operation Theory 49

velocity, ’Max_speed’. The axis will continue to travel at this con-
stant velocity until the velocity is changed by overwiriting the func-
tion APS_velocity_move() or stopped by the functions
APS_stop_move(), APS_emg_stop().

Two kinds of acceleration method are available. By using T-curve
speed pattrn, the acceleration is constant as shown in the in left
diagram below. By using S-curve speed pattrn, the derivative of
acceleration, the ‘jerk’, is a constant as Illustrated in the right dia-
gram below. The speed profile of this kind of motion is shown as
below:

Note: Please refer to Section 6.12: Definition Tables to set the axis
parameter.

PRA_VS means start velocity, PRA_VE means end velocity,
and PRA_ACC/DEC means acceleration or deceleration.

APS_velocity_move () with
S-curve pattern

PRA_VS:
Start Velocity

APS_velocity_move () with
T-curve pattern

PRA_VS:
Start Velocity

Max speed

Velocity

Acceleration

Time

PRA_ACC:
Acceleration Rate

Jerk

Max speed

Velocity

Acceleration

Time

Jerk

PRA_ACC:
Acceleration Rate

50 Operation Theory

4.2.2 Single Axis P-to-P Motion

In this section, the following functions are discussed.

APS_relative_move(Axis_ID, Distance, Max_speed)
APS_absolute_move(Axis_ID, Position, Max_speed)

Single axis P-to-P motion functions will allow the axis to move a
specified distance or move to a specified position. Above two func-
tions are pretty straightforward. ‘Relative’ and ’absolute’ charac-
terizes the function and provides information about the position
method to achieve the target position. States like upside section,
user is able to define the velocity profile pattern, start velocity,
acceleration / deceleration rate before, which via using function
APS_set_axis_param().

If the velocity profile applied is ‘Trapezoidal’. That is the accelera-
tion and deceleration is a constant (shown in left diagram).

If the velocity profile applied is ‘S-Curve’. This is a derivative of
acceleration, ‘jerk’, and is a constant (shown in right diagram).

Note: Please refer to section 6.11 – “Definition table” to set the axis
parameter.

PRA_VS means start velocity, PRA_VE means end velocity,
and PRA_ACC/DEC means acceleration or deceleration.

APS_relative/absolute_move () with
S-curve pattern

APS_relative/absolute_move ()
with T-curve pattern

PRA_VS:
Start Velocity

MaxVel

Velocity

Acceleration

Time

Time

Jerk

PRA_VE:
End Velocity

StrVel

MaxVel

Velocity

Acceleration

Time

Time

Jerk

PRA_VE:
End Velocity

PRA_ACC/DEC:
Acceleration Rate
/ Deceleration Rate

PRA_ACC/DEC:
Acceleration Rate
/ Deceleration Rate

Operation Theory 51

The distance moved during acceleration and deceleration can be
calculated using the following formula. (For both trapezoidal and
S-curve profiles)

Dist_acc = 0.5 * (StrVel + MaxVel) * Tacc
Dist_dec = 0.5 * (FinVel + MaxVel) * Tdec

In some cases, the distance moved may not be long enough. For
example, the ‘Distance‘ in APS_relative_move() is too small or
‘Position’ in APS_absolute_move() is too close to the current
position. These two function calls mentioned above automatically
slows down the velocity. The change in the velocity profile is illus-
trated in the diagram below.

Case 1 to Case 2: The constant velocity period is reduced while
the PRA_VS, PRA_VE, Max. velocity and PRA_ACC/DEC remain
unchanged.

Case 2 to Case 3: The constant velocity period vanished, and,
PRA_VS, PRA_VE, Max. velocity become smaller according to the
ratio described below. While PRA_ACC/DEC remains unchanged.

New_PRA_VS = K * Original_ PRA_VS
New_Max speed= K * Original_Max speed
New_PRA_VE = K * Original_PRA_VE

Where K = Dist/(Distacc_needed + Distdec_needed)= Dist/
(Distjust_case)

Case 1:
The distance is longer
then acceleration and
deceleration needed.

Case 2:
The distance is equal
to acceleration and
deceleration needed.

Case 3:
The distance is smaller
than acceleration and
deceleration needed.

PRA_ACC/DEC
PRA_VS

MaxVel

PRA_VE

52 Operation Theory

4.2.3 Linear Interpolation

“Interpolation between multi-axes” means these axes start simul-
taneously, and reach their ending points at the same time. Linear
means the ratio of speed of every axis is a constant value. In this
section, the following functions are described.

APS_absolute_linear_move (Dimension,
Axis_ID_Array, Position Array,
Max_Linear_speed)

APS_relative_linear_move (Dimension,
Axis_ID_Array, Distance Array,
Max_Linear_speed)

These two functions applied to any 2, any 3 or any 4 of the 16
axes in one card, so that these axes can “start simultaneously, and
reach their ending points at the same time” and the ratio of speed
between these axes is a constant value. Because the speed
parameter is in vector direction within parameter table setting, this
function will take the master axis’s acceleration and deceleration
time constant to calculate. The master axis is the minor axis num-
ber that user perform an interpolation.

Operation Theory 53

2 Axes Linear Interpolation

As in the diagram below, 2 axes linear interpolation means to
move the XY (or any 2 of the 4 axis) position from P0 to P1. The 2
axes start and stop simultaneously, and the path is a straight line.

The speed ratio along X-axis and Y-axis is (ΔX: ΔY), respectively,
and the vector speed is:

When calling the two-axes linear interpolation functions, it is the
vector speed to define the start velocity (master axis), PRA_VS,
and maximum velocity, Max_Linear_speed, both trapezoidal
and S-curve profile are available.

Example:

//…Initialize card
I32 Dimension = 2;
I32 Master_Axis_ID = 1; //Master axis
I32 Axis_ID_Array[4] = {1, 2}; //Axis ID 1 is

master axis.
I32 Position_Array [4] = {1000, 2000}; //(Unit:

pulse)

This cause the two axes (axes 1 & 2) to perform a linear interpola-
tion movement, in which:

ΔX = 1000 pulse
ΔY = 2000 pulse
I32 Max_Linear_Speed = 1000; //(Unit: pulse/

second)

P0(X0,Y0)

P1(X1,Y1)

X-Axis

Y
-A

xi
s

ΔX

ΔY

22)()(
t

Y

t

X

t

P

54 Operation Theory

This way sets the maximum speed to 1000 pulse per second dur-
ing performing 4-axes interpolation motion.

I32 Ret;
APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 0);

//Set T-curve
APS_set_axis_param(Master_Axis_ID, PRA_ACC,

10000);// Set acceleration
APS_set_axis_param(Master_Axis_ID, PRA_DEC,

10000);// Set deceleration

This way sets the master axis acceleration and deceleration to
10000 pulses per square of second during performing 2-axes
interpolation motion. Above program is also set master axis to per-
form the velocity profile with T-curve.

…
Ret = APS_absolute_linear_move (Dimension,

Axis_ID_Array, Position_Array,
Max_Linear_Speed);

…

After whole parameter setting completed and then user is able to
perform the linear interpolation function. If needs operating in rela-
tive mode, perform function APS_relative_linear_move ().
The change in the velocity profile is illustrated in the diagram
below.

For example, according to preceding description that start vector
speed linear interpolation will be equal to the start velocity of mas-
ter axis, is 10 pulses per second and its end velocity is also equal
to the end velocity of master axis, is 30 pulses per second. In this
case, PCI-8253/6 inner, DSP will handle the velocity profile of first
and second axis to match two axes interpolation motion require-
ment. Basically, PCI-8253/6 calculates the acceleration time-‘tacc’
and deceleration time-‘tdec’ and then generates the actual accel-
eration/deceleration rate for axis 1 and 2 which based on the
mathematical model (ratio) as following.

22)()(VytVxtVt

Operation Theory 55

In which Vt is vector speed of linear interpolation motion; Vxt is
speed along x direction (first axis); Vyt is speed along y direction
(second axis).

As illustration above, the x and y axis will be achieved the maxi-
mum speed at the same time that means the linear speed also
achieves maximum linear speed in the meanwhile.

Vt: Linear Velocity

1000 pulse/sec

tacc tdec

Vxt: Axis 1 Velocity

Vyt: Axis 2 Velocity

56 Operation Theory

3 Axes Linear Interpolation

Any 3 of the 16 axes of a DSP-based board may perform 3 axes
linear interpolation. As the figure below, 3 axes linear interpolation
means to move the XYZ (if axes 0, 1, 2 are selected and assigned
to be X, Y, Z respectively) position from P0 to P1 and start and
stop simultaneously. The path is a straight line in space.

The speed ratio along X-axis, Y-axis and Z-axis is (X: Y: Z),
respectively, and the vector speed is:

When calling the 2 axes linear interpolation functions, it is the vec-
tor speed to define the start velocity (master axis), PRA_VS, and
maximum velocity, Max_Linear_speed, both trapezoidal and S-
curve profile are available.

Example:

//…Initialize card
I32 Dimension = 4;
I32 Master_Axis_ID = 1; //Master axis
I32 Axis_ID_Array[4] = {1, 2, 3}; //Axis ID 1 is

master axis.
I32 Position_Array [4] = {1000, 2000, 3000}; //

(Unit: pulse)

P0(X0,Y0,Z0)

P1(X1,Y1,Z1)

X-Axis

Y
-A

xi
s

ΔX

ΔY

Z-Axis

ΔZ

222)()()(
t

Z

t

Y

t

X

t

P

Operation Theory 57

This cause the four axes (axes 1, 2 and 3) to perform a linear
interpolation movement, in which:

ΔX = 1000 pulse
ΔY = 2000 pulse
ΔZ = 3000 pulse

I32 Max_Linear_Speed = 1000; //(Unit: pulse/
second)

This way sets the maximum speed to 1000 pulse per second dur-
ing performing 4-axes interpolation motion.

I32 Ret;
APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 0);

//Set T-curve
APS_set_axis_param(Master_Axis_ID, PRA_ACC,

10000);// Set acceleration
APS_set_axis_param(Master_Axis_ID, PRA_DEC,

10000);// Set deceleration

This way sets the master axis acceleration and deceleration to
10000 pulses per square of second during performing 3-axes
interpolation motion. Above program is also set master axis to per-
form the velocity profile with T-curve.

…
Ret = APS_absolute_linear_move (Dimension,

Axis_ID_Array, Position_Array,
Max_Linear_Speed);

…

After whole parameter setting completed and then user is able to
perform the linear interpolation function in absolute mode. The
change in the velocity profile is illustrated in the diagram below.

For example, according to preceding description that start vector
speed linear interpolation will be equaled to start velocity of master
axis, is 10 pulses per second and its end velocity is also equaled
to end velocity of master axis, is 30 pulses per second. In this
case, inside the PCI-8253/6, the DSP will handle the velocity pro-
file of first and second axis to match two axes interpolation motion
requirement. Basically, PCI-8253/6 calculates the acceleration
time-‘tacc’ and deceleration time-‘tdec’ and then generates the

58 Operation Theory

actual acceleration/deceleration rate for axis 1 and 2 which based
on the mathematical model (ratio) as following.

In which Vt is vector speed of linear interpolation motion; Vxt is
speed along x direction (first axis); Vyt is speed along y direction
(second axis); Vzt is speed along y direction (third axis).

As illustration above, the x and y axis will be achieved the maxi-
mum speed at the same time that means the linear speed also
achieves maximum linear speed in the meanwhile.

222)()()(VztVytVxtVt

Vxt: Axis 1 Velocity

Vyt: Axis 2 Velocity

Vt: Linear Velocity

1000 pulse/sec

tacc tdec

Vzt: Axis 3 Velocity

Operation Theory 59

4 Axes Linear Interpolation

In 4 axes linear interpolation, the speed ratio along X-axis, Y-axis,
Z-axis and U-axis Is (ΔX: ΔY: ΔZ: ΔU), respectively, and the vector
speed is:

Note: All axes must be of the same card.

2222)()()()(
t

U

t

Z

t

Y

t

X

t

P

60 Operation Theory

4.2.4 Circular Interpolation

Any 2 of the 16 axes of a DSP-based analog board can perform
circular interpolation. As the example below, the circular interpola-
tion means XY (if axes 0, 1 are selected and assigned to be X, Y
respectively) axes simultaneously start from initial point, (0,0) and
stop at end point,(1800,600). The path between them is an arc,
and the Max_Arc_Speed is the tangential speed

APS_absolute_arc_move (Dimension, Axis_ID_Array,
Center_Pos_ Array, Max_Arc_speed, Angle)

APS_relative_ arc _move (Dimension,
Axis_ID_Array, Center_Offset_ Array,
Max_Arc_speed, Angle)

Example:

//…Initial card
I32 Dimension = 2; //2 Dimension only
I32 Axis_ID_Array[2] = { 2, 4 };

//Axis_ID 2 is the master axis
I32 Master_Axis_ID = 2;

//Axis_ID 2 is the master axis
I32 Center_Pos_Array[2] = {1000, 0};

//Set center of circle(Unit: pulse)
I32 Max_Arc_Speed = 1000; // pulse/sec
I32 Angle = -143; // clockwise 180 degree
I32 Ret; //Return code

To specify a circular interpolation path, the following parameters
have to be defined clearly.

Center point: The coordinate of the center of arc (in absolute
mode) or the offset distance to the center of arc (in relative mode)

Operation Theory 61

Angle: The moving angle, either clockwise (-) or counter clock-
wise (+)

//…
APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 1

); //Set S-curve
APS_set_axis_param(Master_Axis_ID, PRA_ACC,

100000); //Set acceleration
APS_set_axis_param(Master_Axis_ID, PRA_DEC,

100000); //Set deceleration
Ret = APS_absolute_arc_move(Dimension,

Axis_ID_Array, Center_Pos_Array,
Max_Arc_Speed, Angle); //Perform a circular
interpolation

After whole parameter setting completed and then user is able to
perform the circular interpolation function in absolute mode.

X

Y

(0,0) Center
(1000,0)

(1800,600)

62 Operation Theory

4.2.5 Speed Override

Speed override means that users can change command’s speed
during the operation of motion. User is easy to modify the speed
profile during motion operation by re-executing the function
APS_velocity_move().This function can be applied on other
motion in position or velocity mode. If the running motion is S-
curve or bell curve, the speed override will be a pure s-curve. If the
running motion is t-curve, the speed override will be a t-curve.

The function APS_stop_move() and APS_emg_stop() are used
to stop a moving axis. If user wants to adjust the moving speed of
an axis and just need to overwrite the velocity move function
again. Function APS_stop_move() stops the specified ‘Axis’ with
a deceleration rate and a “Trapezoidal” or “S-Curve” velocity pro-
file during deceleration. See diagram below.

Velocity

APS_stop_move()

PRA_DEC: Deceleration Rate

Acceleration

Jerk

Time

 APS_stop_move()

Velocity

Acceleration

Jerk

Time

PRA_DEC: Deceleration Rate

Operation Theory 63

The function APS_emg_stop() stops the a specified ‘Axis’ imme-
diately without deceleration. See diagram below.

By re-perform the function APS_velocity_move(), user is able
to changes the moving speed of a specified ‘Axis’ with specified
acceleration rate, ’PRA_ACC’, and a ‘Trapezoidal’ velocity profile
during acceleration. If user needs different acceleration rate
between original and newly parameter setting and then has to per-
form the function APS_set_axis_param() to re-define the newly
velocity profile with newly acceleration rate.

The newly parameter table is available to fill during previous
motion traveling.

 APS_emg_stop()

Velocity

Acceleration

Jerk

Time

APS_set_axis_param()

Velocity

APS_velocity_move()

New PRA_ACC Acceleration

Jerk

Time

APS_velocity_move()

Original MaxVel
Newly MaxVel

64 Operation Theory

Use the same method to change the velocity during axis traveling
with S-curve velocity profile.

Note: All change speed on the fly function calls can be applied any
time when an axis is moving but cannot be overridden by
other motion modes like Jog, home, manual pulse genera-
tion, contour motion and G-code program. The axis motion
must be stopped before switching to those modes men-
tioned above.

Original MaxVel

Velocity

Acceleration

Jerk

Time

APS_set_axis_param()

APS_velocity_move()

New PRA_ACC

APS_velocity_move()

Newly MaxVel

Operation Theory 65

4.2.6 Position Override

Position override means that when users issue a positioning com-
mand and want to change its target position during this operation.
If the new target position is behind current position when override
command is issued, the motor will slow down then reverse to new
target position. If the new target position is far away from current
position on the same direction, the motion will remain its speed
and run to new target position. If the override timing is on the
deceleration of current motion and the target position is far away
from current position on the same direction, it will accelerate to
original speed and run to new target position. The operation exam-
ples are shown as below. Notice that if the new target position’s
relative pulses are smaller than original slow down pulses, this
function can’t work properly.

New
End Point

Position Override

APS_relative_move() /
APS_absolute_move()

Original
End Point

Time

66 Operation Theory

By re-performing the function APS_relative_move() or
APS_absolute_move(), you can easily able to changes the des-
tination of a specified ‘Axis’ with specified acceleration / decelera-
tion rate, ’PRA_ACC’, ’PRA_DEC’ and a ‘Trapezoidal’ velocity
profile during acceleration. If you need different acceleration rate
between original and newly parameter setting and then has to per-
form the function APS_set_axis_param() to re-define the newly
velocity profile with newly acceleration / deceleration rate.

Operation Theory 67

New
End
Point

Position

APS_relative_move() /
APS_absolute_move()

Original
End
Point

Time

New
End
Point

Position Override

APS_relative_move() /
APS_absolute_move()

Original
End
Point

Time

68 Operation Theory

4.3 Home Move

In this section, the following functions are discussed.

APS_home_move(Axis_ID)

The above function is used to set the home return mode. One
Home modes are available in PCI-8253/6 right now and it is dis-
cussed below.

After configured whole parameters that applied in homing move
operation by function APS_set_axis_param(). User may use
the APS_home_move() function to command the axis to start
returning home. The ‘PRA_HOME_VS’ defines the starting velocity
for homing move, ‘PRA_HOME_VM’ defines the end velocity for
homing move, the ‘PRA_HOME_ACC’ define the acceleration rate
and the axis continues traveling at the constant velocity until it
reaches the ORG switch. Furthermore, in PCI-8253/6, there
defines the parameter ‘PRA_HOME_VO’ that means the leaving
velocity after achieved home (ORG / Zero position). You are able
to use this parameter to accelerate the motion speed on hoimg
procedure. Home move examples using only the ORG signal are
illustrated as follows:

Table 4-1: Axis Parameter Settings for ORG Home Moves

PRA_HOME_MODE 0 Homemode 1

PRA_HOME_DIR 0 Positive direction

PRA_HOME_CURVE 0 T-curve

PRA_HOME_EZC 0 Disable

PRA_HOME_ACC ACC Acceleration / decelaration

PRA_HOME_VS 0 (VS) Start velocity

PRA_HOME_VM VM Max. velocity

PRA_HOME_VO VO ORG velocity

Operation Theory 69

70 Operation Theory

Here is an example to briefly describe what does the motion
behavior after executed the homing move function.

Case A

1. Accelerate from ‘PRA_HOME_VS’ to ‘PRA_HOME_VM’.

2. Travel with constant velocity ‘PRA_HOME_VM’ until ORG
turns ON.

3. Slow done to stop which is following ‘PRA_HOME_ACC’.

4. Return and accelerate to ‘PRA_HOME_VO’.

5. Travel with constant velocity ‘PRA_HOME_VO’ until ORG
turn Off.

6. Slow down to stop.

Searching ORG rising edge with velocity = 1 pulse per update
cycle time until ORG turn ON, then stop and finish home return.

Example:

//Set homing parameters
APS_set_axis_param(Axis_ID, PRA_HOME_MODE, 0);

//Set home mode

APS_set_axis_param(Axis_ID, PRA_HOME_DIR, 1);
//Set home direction

APS_set_axis_param(Axis_ID, PRA_HOME_CURVE, 0);
//Set acceleration paten (T-curve)

ORG

PRA_HOME_VS

PRA_HOME_VM

PRA_HOME_ACC

(1)

(2)
(3)

(4)

(5)
(6)

PRA_HOME_VO

Operation Theory 71

APS_set_axis_param(Axis_ID, PRA_HOME_ACC,
1000000); //Set homing acceleration rate

APS_set_axis_param(Axis_ID, PRA_HOME_VS, 0);
//Set homing start velocity

APS_set_axis_param(Axis_ID, PRA_HOME_VM, 2000000
); //Set homing maximum velocity.

APS_set_axis_param(Axis_ID, PRA_HOME_VO, 200000
); //Set leaving home velocity

APS_home_move(Axis_ID); //Start homing

…//Check homing done(Motion done)

72 Operation Theory

In addition to home moves using the ORG signal, this board also
offers home moves via the index signal (EZ) as illustrated:

Table 4-2: Axis Parameter Settings for EZ Home Moves

PRA_HOME_MODE 0 Homemode 1

PRA_HOME_DIR 0 Positive direction

PRA_HOME_CURVE 0 T-curve

PRA_HOME_EZC 1 Enable

PRA_HOME_ACC ACC Acceleration / decelaration

PRA_HOME_VS 0 (VS) Start velocity

PRA_HOME_VM VM Max. velocity

PRA_HOME_VO VO ORG velocity

Operation Theory 73

This board offers additional home move functions for specified sit-
uations. If the axis does not pass the EZ signal before the axis
approaches the ORG signal and detectes the ORG signal, the axis
will continuous move to detect the EZ signal. After passing the EZ
signal, the axis will stop and move back to the edge of the EZ sig-
nal.

74 Operation Theory

4.4 Jogging

Jog motion usually uses only a velocity command. There is no
fixed target position, only a target velocity. There is two modes for
jogging motion which one is ‘Free-running mode’ and another is
‘Step mode’. ‘Free-running mode’ means the jog motion applies
the motion with only velocity command. ‘Step mode’ means the jog
motion is performing with specified step command. All on-the-fly
velocity change comments in the point-to-point profile apply here.

Free-running Mode:

The jog mode of motion is very flexible because speed, direction
and acceleration can be changed during motion. For jog motion
operation, the user is able to specifie the maximum jog speed,
acceleration, and the deceleration rate for each axis by function
‘APS_set_jog_param()’. The direction of motion is specified by
the sign of the jog parameters which be set with function
‘APS_set_jog_param()’. When the begin command is given
‘APS_jog_start()’, the motor accelerates up to speed and con-
tinues to jog at that speed until a new speed or stop command
‘APS_stop_move()’ is issued. If user wants to change the jog
speed during motion, the above function will be needed to set
again to meet new jog motion command. The Jog move is illus-
trated as follows,

When the STA signal is turn on, the axis starts to move immedi-
ately. Then, when the STA signal turns off, the axis will start decel-
erating until it stops.

STA signal
OFF

ON

V

Operation Theory 75

When the axis is decelerating and the STA signal is turned on
again, the axis will re-accelerate to the maximum velocity.

STA signal
OFF

ON

V

76 Operation Theory

Step Mode:

An instant change to the motor position can be made with the use
of the step move command. Through jog mode setting by function
‘APS_set_jog_param()’, Upon receiving this command, the con-
troller commands the motor to a position which is equal to the
specified increment plus the current position. User must set the
step offset firstly and then perform the jog switch function
‘APS_jog_mode_switch()’ to enable the axis to jog mode.
Finally, performing start function ‘APS_jog_start ()’. In this
mode, user is also able to set the delay time for jog motion.

As shown in the following figure, when the STA signal is turned on,
the axis starts accelerating and moves a specific distance (offset)
before stopping. After a time delay, if the STA signal is still on, the
axis will start to move untill the STA signal is turned off. The big-
gest different between free run mode is that the jog distance of an
axis is the multiple number of the specified offset. Therefore, you
can easily control the movement of an axis.

STA signal
OFF

ON

offset offset

Delay time

offset
T

V

STA signal
OFF

ON

offset offset

Delay time

offset offset

Delay time

T

V

Operation Theory 77

Below is the programming flow for jogging move.

OFF

ON

offset offset

Delay time

STA signal

T

V

Configure Jog parameters

Switch axis to jog standby state

Jog move operations

Switch axis to normal state

APS_set_axis_param()
APS_get_axis_param()
APS_set_jog_param()
APS_get_jog_param()

APS_jog_mode_switch();

APS_jog_start()

APS_jog_mode_switch();

APS functionsOperation flow

78 Operation Theory

Before executing the jog motion, user has to config whole parame-
ters of jog motion that included the jog mode, moving direction,
acceleration and deceleration rate and so on. An example is as
follows.

Example:

//…Initial card
// … Configure jog move parameter

I32 Axis_ID: The Axis ID from 0 to 65535.
JOG_DATA *pStr_Jog: Structure of jog move

parameters. Define in “type_def.h”
typedef struct
{

I16 i16_jogMode; //Jog mode. 0:Free running
mode, 1:Step mode
I16 i16_dir; //Jog direction. 0:positive,
1:negative direction
I16 i16_accType; //Acceleration and
Deceleration pattern 0: T-curve, 1: S-curve
I32 i32_acc; //Acceleration rate (pulse /
s2)
I32 i32_dec; //Deceleration rate (pulse /
s2)
I32 i32_maxSpeed; //A Positive value,
maximum velocity.(pulse/s)
I32 i32_offset; //A Positive value, step
offset. (For step jog Mode ONLY. (pulse))
I32 i32_delayTime; // Delay time (For step
jog mode ONLY) (range: 0 ~ 65535
millisecond, align by cycle time)

} JOG_DATA;

After configed the jog parameters and then user has to perform
the switch function to enable this axis into jog mode. Noted the
axis is ONLY operating in jog mode if user turned the jog mode on.

ret = APS_jog_mode_switch(Axis_ID, 1); /
/Turn on jog move mode

…
// perform jog move …(APS_jog_start)
…

Operation Theory 79

The axis will be actually performed the jog motion when controller
receiving the start function ‘APS_jog_start()’. If other opera-
tions are selected to be performed after jog motion and the axis
has to release from jog mode by performing the switch function
again to disable this axis from jog mode.

APS_jog_start(Axis_ID,1); //STA signal ON
…
APS_jog_start(Axis_ID, 0); //STA signal OFF
…
ret = APS_jog_mode_switch(Axis_ID, 0); //Turn

off jog move mode
…
// perform other move commands

80 Operation Theory

4.5 Point Table

In this section, the operation of continuous motion is introduced
and implemented with a point table. Continuous motion means a
series of motion commands or positions that can be run continu-
ously. You can set a new command right after previous one with-
out interrupting it.

4.5.1 Point Table Construction

In this section, the following functions are discussed.

APS_set_point_table(Axis_ID, Index, POINT_DATA
*Point)

APS_get_point_table(Axis_ID, Index, POINT_DATA
*Point)

The APS_set_point_table() function is used to declare the
parameters for the specified axis motion list describing a continu-
ous motion trajectory. After the declaration for
APS_set_point_table(), you can call the functions discussed
in next section to piece-wisely extend the trajectory by adding
‘Index’. In the meantime, each axis has a maximum of 32K points
which can be saved in the onboard memory. By utilizing a double-
buffered design, the point table size is able to regarded as infinite.
After the upper 16 points are proceeded and finished the lower 16
points will then be proceeded continuously. While the lower 16
points is operating, the new points are able to be filled into the
empty region (upper 16 points). In the same manner, when next
upper 16 points is proceeded, the region of the previous lower 16
points will be filled. The maximum time delay of point update does
not exceed 1 ms.

Operation Theory 81

The last parameter ‘POINT_DATA *Point’ defines the total
parameters of axes that will be involved in the continuous motion.
The structure of ‘POINT_DATA’ defines in “type_def.h” and
listed in following table,

You are able to config the moving method, stop condition and
moving type by parameter ‘_opt’ definition and it is listed as fol-
lows,

Point move option: _opt

Bit 0: 1: Relative move, 0: Absolute move

Bit 2: 1: Arc move, 0: Linear move

Bit 4: 1: INP ON (In position signal), 0: CSTP ON (command stop
signal)

Bit 5: 1: Last point index. 0: Not the last point index (if this bit is
turned on, the point table movement will stop after this point.)

Parameter Description Unit / Range

_pos
Position data /

Center (Arc trajectory)
pulse

_accType Acceleration pattern 0: T curve ; 1: S curve

_decType Deceleration pattern 0: T curve ; 1: S curve

_acc Acceleration rate pulse /

_dec Deceleration rate pulse /

_initSpeed Start velocity pulse / s

_maxSpeed Maximum velocity pulse / s

_endSpeed End velocity pulse / s

_angle Arc move angle -360 to 360 degrees

_dwell Dwell times ms

_opt Point move option (Refer to below table)

Table 4-3: POINT_DATA Structure

7 6 5 4 3 2 1 Bit : 0

- -
Last
point

Finish
Condition

-
Linear/

Arc
-

Absolute/
Relative

82 Operation Theory

Bit ‘0’ decides the moving method to relative mode or absolute
mode. Bit ‘2’ decides the trajectory moving following linear interpo-
lation or circular interpolation method. Bit ‘0’ decides the moving
method to relative mode or absolute mode. Bit ‘4’ decides the stop
method that refers to ‘INP’ signal or ‘CSTP’ signal.

Operation Theory 83

4.5.2 Point index

In order to easy to establish the point table, there uses point index
‘Index’ to program or monitor the point sequence whether work
well or not. In this section, the following functions are discussed.

APS_get_start_point_index(Axis_ID,* Index)
APS_get_running_point_index(Axis_ID,* Index)
APS_get_end_point_index(Axis_ID,* Index)

By using the APS_get_xxx_point_index() function, the point
index is dedicated to identify the start point, current point, or end
point which is operating in point table sequence.

The PCI-8253/6 allow point tables to be performed by different
start point indexes to different end point indexes. In other word,
the movement duration is programmable for different start points
to end points. For example, if the depth of the established point
table is 100 points and then the movement can be started from
point index ‘5’ to index ‘15’.

.

.

.

Axis 0

SS
32

Points

Index.1 Point

Index.2 Point

Index.3 Point

Index.4 Point

Index.5 Point

Index.6 Point

Index.7 Point

Index.32 Point

.

.

.

Axis 1

Index.1 Point

Index.2 Point

Index.3 Point

Index.4 Point

Index.5 Point

Index.6 Point

Index.7 Point

Index.32 Point

.

.

.

Axis 5

Index.1 Point

Index.2 Point

Index.3 Point

Index.4 Point

Index.5 Point

Index.6 Point

Index.7 Point

Index.32 Point

84 Operation Theory

4.5.3 Point table execution

In this section, the following function is discussed.

APS_point_table_move(Dimension, *Axis_ID_Array,
StartIndex, EndIndex)

By using the APS_xxx_table_move() function, the point index is
dedicated to identify the start point, next point, or end point which
is operating in point table sequence. By using the aforementioned
functions to pause the point table movement or set the point table
movement to repeat, when the pause command is issued, it will
not stop the current point but stop at the next point index. Further-
more, when the repeat function is enabled, it will repeat the point
move until the repeat function is disabled or a stop function is
issued.

In order to carries out point table movement, the movement
dimension, active axis number and its index must be defined first.
Furthermore, the point table sector executed also needs to be
defined before point table movement begins. ‘Dimension’ means
the maximum dimension which the point table is executed. If there
is only one 3D coordinated point in the point table sequence,
which the most points exists in 2D or 1D coordinate, the dimension
of this point table must be set completely to 3D coordinate. If inter-
polation movememt is needed, the ‘Axis_ID_Array’ has to set
by your application. Other important properties of
‘Axis_ID_Array’ also define the reference axis, control axis and
slave axis while this axis array is set in interpolation movement.
Refer to the following table. if axis 0 to axis is the active axes in
your application, the allocation of the axis that will define the axis
property to reference as control or slave.

Typically, the minimum axis number will be the control axis, mean-
ing it decides the behavior of interpolation. Therefore, the slave
axis will follow the control axis to execute its movement corre-
spondingly. It allows for several existing slave axes. For the refer-
ence axis, if it is define to the first element of ‘Axis_ID_Array’
and its parameter is able to be reused in other axes, in other word,
if all the axes have the same move parameter in the motion opera-
tion, then you just need to program the related motion parameter
for the reference axis.

Operation Theory 85

For example, in Case A, if you need to perform the 3D linear inter-
polation with continuous moving by point table configuration, then
the axis 0 forms the first element of the three axes array, following
the rule that mentioned above. Axis 0 shall be defined to reference
axis, and then the other two axes will follow the axis 0 parameter
for their usage. Furthermore, the axis 0 is also the minor axis (with
minor axis number within the three axes array), and therefore axis
0 also roles the control axis in this axes array. The axis 1 and axis
2 will process the interpolation move and follow the axis 0 accord-
ingly.

Case A

In the illustration below (Case B), axis 1 was the first element
instead of axis 0 of a three axes array so that the axis 1 would be
the reference axis in this array. In other way, axis 0 is still the minor
axis in this array, and therefore it is still the control axis in this
array.

Case B

For another method, the point table execution is able to begin from
any start point with ‘StartIndex’ and then close with ‘EndIn-
dex’.

Axis 0 Axis 1 Axis 2

Axis 1 Axis 2 Axis 0

Axis 0 is defined as the
control axis and reference
axis simultaneously.

Axis 1 is defined as
the reference axis.

Axis 0 is defined as
the control axis.

86 Operation Theory

There are several examples presented as follows:

Example: 2-D Linear move

The resulting 2-D trajectory is:

#include “type_def.h”
#include “APS_define.h”
#include “APS168.h”
#include “ErrorCodeDef.h”

I32 ret;
POINT_DATA Point_AX0, Point_AX1;
I32 Axis_ID_Array[2] = {0, 1};

// Set first position for AX0 and it could be
relative or absolute value (Unit: Pulse)

Point_AX0.i32_pos = 100;
Point_AX0.i16_accType = 1;//Acceleration pattern

0: T curve, 1:S curve
…
// Set finish condition to INP signal occurred ;

set linear interpolation ; set absolute
motion

Point_AX0.i32_opt = 9

//Set point data to card memory
ret = APS_set_point_table(Axis_ID[0], 0, &

Point_AX0);
…
//Set and save parameter for AX1
…
// ********* Set remaining point *********

// Start a point table move

Axis 0

Axis 1

(100,0)

(160,80)

(320,110)

(0,0)

(1)
(2)

(3)
(4)

(320,160)

Operation Theory 87

ret = APS_point_table_move(2, Axis_ID_Array, 0 ,
3);

…

A 2-D arc trajectory is also able to add to the continuous motion
trajectory in the point table.

Example: 2-D Linear Move

The resulting 2-D trajectory is:

The resulting velocity vs. time is:

Axis 0

Axis 2

(100,0)

(100,100) (0,100)

(0,0)

(1)

(2)

(3)

(4)

Linear
Velocity

Axis 0
Velocity

(4)(3)(2)(1)

Axis 2
Velocity

88 Operation Theory

#include “type_def.h”
#include “APS_define.h”
#include “APS168.h”
#include “ErrorCodeDef.h”

I32 ret;
POINT_DATA Point_AX0, Point_AX2;
I32 Axis_ID_Array[2] = {0, 2};
// *******First motion*******
// Set first position for AX0 (Unit: Pulse)
Point_AX0.i32_pos = 100;
Point_AX0.i16_accType = 1;//Acceleration pattern

0: T curve, 1:S curve
…
// Set finished condition to INP signal occurred

; set linear interpolation ; set absolute
motion

Point_AX0.i32_opt = 9
//Set point data to card memory
ret = APS_set_point_table(Axis_ID[0], 0, &

Point_AX0);
…
//Set and save parameter for AX2
// *******Second motion*******
// Set center position for AX0 and it could be

relative or absolute value (Unit: Pulse)
Point_AX0.i32_pos = 100;
…
Point_Ax0.i32_angle = 180 //(Unit: Degree)
Point_AX0.i32_opt = 13 //Set to circular

interpolation
//Set point data to card memory
ret = APS_set_point_table(Axis_ID[0], 1, &

Point_AX0);
…
// Set center position for AX2
Point_AX2.i32_pos = 50;
…
//Set point data to card memory
ret = APS_set_point_table(Axis_ID[1], 1, &

Point_AX2);
…

Operation Theory 89

//********* Set and save parameter for third and
fourth motion ********

// Start a point table move
ret = APS_point_table_move(2, Axis_ID_Array, 0 ,

3);
…

A 3-D trajectory is also able to add to the continuous motion trajec-
tory in the point table.

Example: 2-D Linear Move

The resulting 3-D trajectory is:

(100,0,0)

(100,0,50)

(100,0,100)

(0,0,0)

Axis 0

Axis 1

Axis 2

(1)

(2)

(3)

90 Operation Theory

The resulting velocity vs. time is:

I32 ret;
POINT_DATA Point_AX0, Point_AX1, Point_AX2;
I32 Axis_ID_Array[3] = {0, 1, 2};

// ********First motion *******
// Set first position for AX0 (Unit: Pulse)
Point_AX0.i32_pos = 100;
Point_AX0.i16_accType = 1;//Acceleration pattern

0: T curve, 1:S curve
…
// Set finished condition to INP signal occurred

; set linear interpolation ; set to absolute
motion

Point_AX0.i32_opt = 9
//Set point data to card memory
ret = APS_set_point_table(Axis_ID[0], 0, &

Point_AX0);
…

Linear
Velocity

Axis 0
Velocity

Axis 1
Velocity

Axis 2
Velocity

Operation Theory 91

//Set and save parameter for AX1 and AX2

// *******Second motion *******

// Set center position for AX0
Point_AX0.i32_pos = 100;
…
Point_Ax0.i32_angle = 180 //(Unit: Degree)
Point_AX0.i32_opt = 13 //Set to circular

interpolation ; set to absolute motion
//Set point data to card memory
ret = APS_set_point_table(Axis_ID[0], 1, &

Point_AX0);
…
// Set center position for AX1
Point_AX1.i32_pos = 0;
…
Point_Ax1.i32_angle = 180
Point_AX1.i32_opt = 13
…
ret = APS_set_point_table(Axis_ID[1], 1, &

Point_AX1);
…
// Set center position for AX2
Point_AX2.i32_pos = 50;
…
Point_Ax2.i32_angle = 180
Point_AX2.i32_opt = 13
…
ret = APS_set_point_table(Axis_ID[2], 1, &

Point_AX2);

//********* Set and save parameter for third
motion ********************

// Start a point table move
ret = APS_point_table_move(3, Axis_ID_Array, 0 ,

2);
…

When the motion operation is smooth, the motion can also be fro-
zen for a specified period of time by inserting ‘Dwell’, definied by
parameter ‘dwell‘ in units of millisecond. If the dwell time was set in

92 Operation Theory

point table sequence, the index will be occupied. For example, as
in the 2-D linear movement above, the motion procedure is config-
ured into four steps so that the point table index 0 to index 3 are
used. However, if you decided to insert two dwell times between
the first motion, second motion and third motion accordingly, the
total index used will be from index 0 to index 5 because there are
two indexs be used to insert dwell time. The following is an exam-
ple:

Operation Theory 93

Insert Dwell into Motion Sequence

The resulting velocity vs. time is:

I32 ret;
POINT_DATA Point_AX0, Point_AX1;
I32 Axis_ID_Array[2] = {0, 1};

// Set first position for AX0 and it could be
relative or absolute value (Unit: Pulse)

Point_AX0.i32_pos = 100;
Point_AX0.i16_accType = 1;//Acceleration pattern

0: T curve, 1:S curve
…
Point_AX0.u32_dwell = 500 ; //Set dwell time to

0.5 s
// Set finish condition to INP signal occurred ;

set linear interpolation ; set absolute
motion

Point_AX0.i32_opt = 9

Axis 0

Axis 1

(100,0)

(160,80)

(320,110)

(0,0)

(1)
(2)

(3)
(4)

(320,160)

(5) (3) (1)

Linear
Velocity

Axis 0
Velocity

Axis 1
Velocity

0.5 sec 1.0 sec

(2) (4)

94 Operation Theory

//Set point data to card memory
ret = APS_set_point_table(Axis_ID[0], 0, &

Point_AX0);
…
//***Using index 1 to insert first dwell time ***

Point_AX0.u32_dwell = 500 ; //Set dwell time to
0.5 s

//Set dwell data to card memory
ret = APS_set_point_table(Axis_ID[0], 1, &

Point_AX0);

//Set and save parameter for AX1
…
//***Set next point***
…
//***Using index 3 to insert first dwell time***

Point_AX0.u32_dwell = 1000 ; //Set dwell time to
1 s

//Set dwell data to card memory
ret = APS_set_point_table(Axis_ID[0], 3, &

Point_AX0);

//***Set remaining point***

// Start a point table move
ret = APS_point_table_move(2, Axis_ID_Array, 0 ,

5);
…

Operation Theory 95

4.6 Motion Status and Related IO Monitoring

The PCI-8253/6 board has vast dedicated I/O and can roughly be
divided into 2 categories. They are the motion related I/O’s and the
motion status. Motion related I/O’s are input and output signals
dedicated to motion. For example: PEL/MEL, position/velocity
feedback, etc. In addition, the motion status will be updated cycli-
cally by motion status monitoring function within per servo update
cycle – 300 us (/ 6 axes). This section will concentrate on the
motion related I/O and their function calls.

 Section 4.6.1: Position Control and Feedback

 Section 4.6.2: Velocity Feedback

 Section 4.6.3: Motion I/O Status

 Section 4.6.4: Motion Status

96 Operation Theory

4.6.1 Position Control and Feedback

In this section, the following functions are discussed.

APS_set_position(Axis_ID, Position)
APS_get_position(Axis_ID, *Position)
APS_set_command(Axis_ID, Command)
APS_get_command(Axis_ID, *Command)

Set position

The APS_set_position() function allows users to set a current
position counter value for the servo driver.

Get position information

The DSP-based analog motion controller - PCI-8253/6 controls
servo drivers & motors via volt commands. For each servo update
cycle (50 us per axis), the PCI-8253/6 sends a command to and
receives a response from the servo driver via encoder feedback.
Through command and response, an abundant amount of infor-
mation is carried in and out, including position command and posi-
tion feedback. The function call APS_get_position() will
retrieve such information. The parameter ‘*Position’ retrieves the
current position feedback.

Set command

This function is used to set the position information of one axis.
The information is in unit of pulse. The function
‘APS_set_command()’ will change current position or command to
a new one. Notice that the set command may cause axis to move
violently in closed loop control or absolute control system. How-
ever, it is no problem in open loop system. The set position com-
mand is legal in closed loop or absolute control system because it
will also set command to the same value at the same time.

Get command information

For each servo update cycle (50 us per axis), the PCI-8253/6
sends a command to and receives a response from the servo
driver via encoder feedback. The function call
APS_get_command() will retrieve command information which be
calculated by DSP and the parameter ‘*Command’ retrieves the
next command, user is easy to monitor the command status and
verify the generated profile by such function.

Operation Theory 97

4.6.2 Velocity Feedback

In this section, the following functions are discussed.

APS_get_command_velocity(Axis_ID, *Velocity)
APS_get_feedback_velocity(Axis_ID, *Velocity)

Get feedback velocity information

The DSP-based analog motion controller - PCI-8253/6 controls
servo drivers & motors via volt command. For each servo update
cycle (50 us per axis), the PCI-8253/6 sends a command to and
receives a response from the servo driver via encoder feedback.
Through command and response, an abundant amount of infor-
mation is carried in and out, including position command and posi-
tion feedback. Due to the closed-loop inside DSP and the position
feedback information will be also converted to velocity feedback
information to easy monitor the deviation between velocity com-
mand and response. The function call
APS_get_feedback_velocity() will retrieve such information.
The parameter ‘*Velocity’ retrieves the current velocity feed-
back, which present motor speed from the servo driver.

Get command velocity information

For each servo update cycle (50 us per axis), the PCI-8253/6
sends a command to and receives a response from the servo
driver. The function call APS_get_command_velocity() will
retrieve command information which be calculated by DSP and
the parameter ‘*Velocity’ retrieves the next command, user is
easy to monitor the command status and verify the generated pro-
file by such function.

4.6.3 Motion I/O Status

In this section, the following function is discussed.

APS_motion_io_status(Axis_ID)

The “motion DIO” mentioned here refers to the motions dedicated
to the digital I/O signals including PEL, MEL, ORG, and EMG.
Each axis has its own motion DIO signal except EMG. All axes
from a single card shares the same EMG signal. User has to con-
fig the related I/O logic by function ‘APS_set_axis_param()’

98 Operation Theory

firstly to insure that the signal works legally. In other way, for
detailed of motion I/O status, user is able to refer to motion I/O sta-
tus table to check each I/O bit definition in function library section.

End-limit signals

The end-limit signals are used to stop the axis when they are
active. There are two possible stop modes, one is “stop immedi-
ately”, and, the other is “decelerate to start velocity then stop”. The
parameter ‘PRA_EL_Mode’ in ‘APS_set_axis_param()’ are used
to select the mode. Furthermore, user is able to use either an ‘a’
contact switch or a ‘b’ contact switch by setting the parameter
‘Logic’.

PEL signal indicates the end-limit in the positive (plus) direction.
The MEL signal indicates the end-limit in the negative (minus)
direction. When the axis is moving towards the positive direction,
the axis will be stopped when the PEL signal becomes active,
while the MEL signal is no affect in this case, and vise versa.
When the PEL is active, only the negative (minus) direction motion
is allowed.

The PEL/MEL signals can generate an IRQ, if the interrupt service
routine is enabled. Refer to section 4.10.

The PEL/MEL status can be monitored through the function
APS_motion_io_status().

ORG signal

The ORG signal is used, when the axis is operating under the
home return mode. The logic polarity of the ORG signal is select-
able using the parameter ‘Logic’ of ‘APS_set_axis_param()’.
The ORG status can be monitored using the function
APS_motion_io_status().

EMG signal

Each PCI-8253/6 board has an EMG signal input. Whenever this
EMG signal becomes active, all the axes control by in the card will
stop moving immediately.

The EMG signal is capable of generating an IRQ if an interrupt
service routine is enabled, refer to section 4.10.

Operation Theory 99

The logic polarity of the EMG signal is selectable using the param-
eter ‘Logic’ of ‘APS_set_axis_param()’. The EMG status can
be monitored using the function APS_motion_io_status().

Except for the above mentioned motion I/O, this function retrieves
more motion related I/O status simultaneously which included
alarm signal, in position signal, servo on signal and so on. For
detailed information of motion I/O status, user can refer to motion
I/O table to understand the definition of each bit as following table.

Table 4-4: Motion IO Status Bit Definition

7 6 5 4 3 2 1 0

SVON INP EZ EMG ORG MEL PEL ALM

15 14 13 12 11 10 9 8

ABSL TLC SMEL SPEL ZERO WARN RDY

100 Operation Theory

4.6.4 Motion Status

In this section, the following function is discussed.

APS_motion_status(Axis_ID)

This function is used to get one axis’ motion status. The status
includes running, normal stop, abnormal stop by reasons, in wait-
ing other axis, follow status, in some modes, in accelerating or
decelerating and so on. Status can be more than two such like
mode and running. Users need to use this function to check
whether the ‘Fire-and-forget’ function is done in polling system. In
even driven system, users can use interrupt event functions. For
detailed of each bit of motion status, user is able to refer to motion
status table to check each bit definition in function library section.

Table 4-5: Motion status definition table

7 6 5 4 3 2 1 0

SMV HMV NSTP DIR DEC ACC VM CSTP

15 14 13 12 11 10 9 8

JOG SLV PPS PDW PMV SMO CIP LIP

23 22 21 20 19 18 17 16

SEMGS MELS PELS WANS ALMS EMGS SVONS ASTP

31 30 29 28 27 26 25 24

-- ERRS -- -- -- STPOA SMELS SPELS

Operation Theory 101

4.7 Driver Management

In this section, all servo driver related functions are discussed.
Including:

4.7.1 Servo On

In this section, the following function is discussed.

APS_set_servo_on(Axis_ID, Servo_on)

This function is able to command one axis to servo on individually,
moreover, if user wants to monitor the status for servo on/off, the
function APS_motion_status() is useful to indicate the axis’s
servo current status.

102 Operation Theory

4.8 Data Sampling

In this section, the following functions are discussed.

APS_set_sampling_param(Board_ID, Param_No,
Param_Dat)

APS_get_sampling_param(Board_ID, Param_No,
*Param_Dat)

APS_wait_trigger_sampling(Board_ID, Length,
PreTrgLen, TimeOutMs, STR_SAMP_DATA_4CH
*DataArr)

In order to help user to easy analyze the motion related profile or
data. Data sampling conception was addressed to users and it is
able to regard as digital scope. Similar to oscilloscope, in PCI-
8253/6, there gives each axis 4 monitoring channels, trgger level
setting, trigger source selection function ans so on. Users can use
these monitoring channels to monitor a variety of I/O data, such as
feedback velocity, INP (in position) signal status, etc.

To be able to use the monitoring function, users must understand
the configuring and operating procedures.

Configuring procedures:

Configuring procedure is necessary before a monitor function
startes. There are two main instructions during configuration:

1. Set_monitor_config

This function is used to set the monitoring configuration, such
as sampling rate, trigger condition…etc. This function must be
executed before monitoring starts. The function
APS_set_sampling_param() is used to config the related
parameter and set the action triggered channel. The first
parameter ‘Param_No’ specifies the sampling parameter num-
bers that are listed below.

Operation Theory 103

Sampling parameters definition table

Para NO. Define Description Parameter data value.

00h SAMP_PA_RATE
Sampling rate(cycle)

(depending on cycle time)
1- 65535

(times of cycle)

02h SAMP_PA_EDGE Edge triggered
0:Rising edge
1:faling edge

03h SAMP_PA_LEVEL Triggered level
(I32) -2147483648 to

2147483647

05h SAMP_PA_TRIGCH Trigger channel 0 - 3 (Ch0-Ch3)

10h SAMP_PA_SRC_CH0
Sampling source of

Channel 0
Refer to sampling

source table

11h SAMP_PA_SRC_CH1
Sampling source of

Channel 1
Refer to sampling

source table

12h SAMP_PA_SRC_CH2
Sampling source of

Channel 2
Refer to sampling

source table

13h SAMP_PA_SRC_CH3
Sampling source of

Channel 3
Refer to sampling

source table

Table 4-6: Sampling Parameters Definition Table

104 Operation Theory

2. Set_monitor_channel

This function is used to set the monitoring target. This function
must be executed before monitoring can started. The function
APS_set_sampling_param() is also used to set the monitor-
ing channel. The first parameter ‘Param_No’ specifies the sam-
pling parameter numbers that are listed below. The remaining
parameters ‘Param_Dat’ are used for the monitoring targets.
For general usage, each channel is available to config to same
trigger source with individual axis, or config to different trigger
source with same axis, the relationship was illustrated as fol-
lowing table.

Source Symbol Define Description Value Range

00h SAMP_COM_POS
Command position

(pulse)
I32 value

01h SAMP_FBK_POS
Feedback position

(pulse)
I32 value

02h SAMP_CMD_VEL
Command velocity

(pps)
I32 value

03h SAMP_FBK_VEL Feedback velocity (pps) I32 value

04h SAMP_MIO
Motion IO status (Same
as Get motion IO func-

tion)
I32 value (bit format)

05h SAMP_MSTS
Motion status (Same as
Get motion status func-

tion)
I32 value (bit format)

06h SAMP_MSTS_ACC
Motion status at accel-

eration (Command
velocity)

0: Not at acceleration
1: At acceleration

07h SAMP_MSTS_MV
Motion status at max
velocity (Command

velocity)

0: Not at max. velocity
1: At max. velocity

08h SAMP_MSTS_DEC
Motion status at decel-

eration (Command
velocity)

0: Not at deceleration
1: At deceleration

09h SAMP_MSTS_CSTP
Motion status command

stop (CSTP)
0: CSTP status ON
1: CSTP status OFF

Table 4-7: Sampling Source Definition Table

Operation Theory 105

Operating procedures:

Like as the above statement, the data sampling conception is sim-
ilar to oscilloscope. There are 2 major operation procedures which
have to execute.

1. Configure trigger condition

Before the sampling starts, user has to conig related triggred
condition that included triggered sampling rate, triggered edge
selection, triggered level. After the triggered condition comple-
tion, user has to set trigger source which user wants to monitor
with determined channel.

This function returns a value immediately and carries out real
time monitoring of specified monitoring targets.

0Ah SAMP_MSTS_NSTP
Motion status normal

stop (NSTP)
0: NSTP status ON
1: NSTP status OFF

0Bh SAMP_MIO_INP
Motion status in posi-

tion (INP)
0: INP status ON
1: INP status OFF

0Ch SAMP_MIO_ZERO
Motion status zero

(ZERO)
0: ZERO status ON
1: ZERO status OFF

0Dh SAMP_MIO_ORG
Motion status ORG sta-

tus
0: OGR status ON
1: OGR status OFF

Source Symbol Define Description Value Range

Table 4-7: Sampling Source Definition Table

106 Operation Theory

2. Select the sampling source

After sampling condition configuration completion, user needs
to decide what kinds date wants to monitor, in PCI-8253/6,
ADLINK offers 14 sampling sources for monitoring and they
are listed as the above table.

Example:

//... initialize card
APS_set_sampling_param(Board_ID, SAMP_PA_RATE, 2

); //Set sampling rate
APS_set_sampling_param(Board_ID, SAMP_PA_EDGE, 0

); //Set trigger edge (rising edge)
APS_set_sampling_param(Board_ID, SAMP_PA_LEVEL,

1); //Set trigger level (1)
APS_set_sampling_param(Board_ID, SAMP_PA_TRIGCH,

2); //Set trigger channel (channel 2)

The sampling condition needs to be configured in advance. In this
example, the sampling rate was set to two multiple of cycle time
and defines the triggered edge to rising type. Furthermore, the
triggered level was set to ‘1’ because the I/O status just has
defined to either ‘high’ or ‘low’. Finally, the channel was picked as
triggered channel.

APS_set_sampling_param(Board_ID,
SAMP_PA_SRC_CH0, SAMP_CMD_VEL); //Set
channel_0 sampling source

Command Velocity
(1st Axis)

Feedback Position
(1st Axis)

INP
(1st Axis)

Zero Velocity Index
(1st Axis)

Axis 1

Triggered
Channel

Channel 0 Raw Data
(Command Velocity)

Channel 1 Raw Data
(Feedback Position)

Channel 2 Raw Data
(INP Status)

Channel 3 Raw Data
(Zero Velocity Index)

PreTrgLen Length

L
ength

CH0

CH1

CH2

CH3

Operation Theory 107

APS_set_sampling_param(Board_ID,
SAMP_PA_SRC_CH1, SAMP_FBK_POS); //Set
channel_1 sampling source.

APS_set_sampling_param(Board_ID,
SAMP_PA_SRC_CH2, SAMP_MIO_INP); //Set
channel_2 sampling source

APS_set_sampling_param(Board_ID,
SAMP_PA_SRC_CH3, SAMP_MIO_ZERO); //Set
channel_3 sampling source.

After sampling condition configuration completion, user still has to
select the triggered source for each sampling channel.

I32 Length = 1024; //Total sampling data array
size

I32 PreTrgLen = 100; //The number of pre-trigger
points

STR_SAMP_DATA_4CH DataArr[1024];
I32 TimeOutMs = 10000; //10 second timeout

Ret =APS_wait_trigger_sampling(Board_ID, Length,
PreTrgLen, TimeOutMs, DataArr);

//…

108 Operation Theory

Finally, you need to define the storage length for sampling raw
data. After the function APS_wait_trigger_sampling() was
executed, the 1024 raw data was stored in the DataArr. Other
advantage was also offered in this function, user is able to set the
parameter ‘PreTrgLen’ and it defines the length of pre-buffer, like
as oscilloscope, user is also able to monitor the raw data before
triggered event occurred.

Example:

//... initialize card
APS_set_sampling_param(Board_ID, SAMP_PA_RATE, 2

); //Set sampling rate
APS_set_sampling_param(Board_ID, SAMP_PA_EDGE, 0

); //Set trigger edge (rising edge)
APS_set_sampling_param(Board_ID, SAMP_PA_LEVEL,

1); //Set trigger level (1)
APS_set_sampling_param(Board_ID, SAMP_PA_TRIGCH,

2); //Set trigger channel (channel 2)

Similar to previous example, you have to config the sampling con-
dition in advance. The related condition was configed as above
setting.

APS_set_sampling_param(Board_ID,
SAMP_PA_SRC_CH0, SAMP_CMD_VEL); //Set
channel_0 sampling source

Command Velocity (1st
Axis)

Feedback Position
(2nd Axis)

INP
(1st Axis)

Zero Velocity Index
(3rd Axis)

Triggered
Channel

Channel 0 Raw Data
(Command Velocity)

Channel 1 Raw Data
(Feedback Position)

Channel 2 Raw Data
(INP Status)

Channel 3 Raw Data
(Zero Velocity Index)

PreTrgLen Length

Le
ng

th

CH0

CH1

CH2

CH3

Operation Theory 109

APS_set_sampling_param(Board_ID,
SAMP_PA_SRC_CH1, SAMP_FBK_POS); //Set
channel_1 sampling source.

APS_set_sampling_param(Board_ID,
SAMP_PA_SRC_CH2, SAMP_MIO_INP); //Set
channel_2 sampling source

APS_set_sampling_param(Board_ID,
SAMP_PA_SRC_CH3, SAMP_MIO_ZERO); //Set
channel_3 sampling source.

After sampling condition configuration completion, user still has to
select the triggered source for each sampling channel.

I32 Length = 1024; //Total sampling data array
size

I32 PreTrgLen = 100; //The number of pre-trigger
points

STR_SAMP_DATA_4CH DataArr[1024];
I32 TimeOutMs = 10000; //10 second timeout

Ret =APS_wait_trigger_sampling(Board_ID, Length,
PreTrgLen, TimeOutMs, DataArr);

//…

Finally, you need to define the storage length for sampling raw
data. After the function APS_wait_trigger_sampling() was exe-
cuted, the 1024 raw data was stored in the DataArr. Other advan-
tage was also offered in this function, user is able to set the
parameter ‘PreTrgLen’ and it defines the length of pre-buffer, like
as oscilloscope, user is also able to monitor the raw data before
triggered event occurred.

110 Operation Theory

4.9 Interrupt Control

In this section, the following functions are discussed.

APS_int_enable(Board_ID, Enable)
ASP_set_int_factor(Board_ID, Item_No, Factor_No,

Enable)
ASP_get_int_factor(Board_ID, Item_No, Factor_No,

*Enable)
APS_wait_single_int(Int_No, Time_Out)
APS_wait_multiple_int(Int_Count, *Int_No_Array,

Wait_All, Time_Out)
APS_reset_int(Int_No)
APS_set_int(Int_No)

The PCI-8253/6 board can generate an interrupt for certain condi-
tions. Refer to the figure below:

Users can either set a call back routine that will be executed when
an interrupt occurs, or create a thread to wait for an event that will
be triggered when an interrupt occurs.

To enable or disable the interrupt generated from the PCI-8253/6
board, use the APS_int_enable() function. It acts as an ON_OFF
switch. Once disabled, the PCI-8253/6 board will cease to gener-
ate any interrupt signals to the host system.

In addition to APS_int_enable(), users need to define the condi-
tions under which an interrupt signal should occurs by using the
ASP_set_int_factor() function in order to successfully intro-
duce an interrupt signal to the host system. The parameter
‘Item_No’ of APS_set_int_factor() is use to specify the axis

SSCNET board

DLL & Driver

User AP

Thread waiting for event

Operation Theory 111

source with ‘Factor_No’ specifying the interrupt factor for this
specified source.

When the user enabled the interrupt function for specified factors
by ASP_set_int_factor(), it could use this function to wait a
specific interrupt by APS_wait_single_int(). When this func-
tion was running, the process would never stop until the event was
be triggered or the function was time out. This function returns
when one of the following occurs:

1. The specified interrupt factor is in the signaled state.

2. The time-out interval elapses.

This function checks the current state of the specified interrupt fac-
tor. If the state is non-signaled, the calling thread enters the wait
state. It uses no processor time while waiting for the INT state to
become signaled or the time-out interval to elapse.

Except single interrupt triggering function, this board also offers
the multiple interrupt event triggering function
APS_wait_multiple_int(), the most different points are the
function will return the event triggered signal when one of the fol-
lowing occurs:

1. Either any one or all of the interrupt factors are in the sig-
naled state.

2. The time-out interval elapses.

No matter what interrupt method selected, when the interrupt was
occurred and the wait function is return. User should use
APS_reset_int () to reset the interrupt by themselves. If user
does not reset the interrupt, the wait function will pass immediately
next time.

Item Description

0 Axis 0 interrupt factors

1 Axis 1 interrupt factors

… …

15 Axis 15 interrupt factors

16 System interrupt factors

Table 4-8: Interrupt Factor Table

112 Operation Theory

Item 0~15: Axes interrupt factors number definition

Axes interrupt factors condition description

7 6 5 4 3 2 1 0

IZERO IWARN IINP IEZ IORG IMEL IPEL IALM

15 14 13 12 11 10 9 8

-- ITLC IASTP INSTP IDEC IACC IVM ICSTP

NO. Define Interrupt condition description

0 IALM Servo alarm signal turn ON

1 IPEL Positive end limit switch is turn ON

2 IMEL Minus (Negative) end limit switch turn ON

3 IORG Home switch turn ON

4 IEZ / IEZP EZ passed signal turn ON

5 IINP In position signal turn ON

6 IWARN Servo warning ON

7 IZERO Zero speed

8 ICSTP Command stop

9 IVM In maximum velocity

10 IACC In acceleration

11 IDEC In deceleration

12 INSTP Normal stop(Motion done)

13 IASTP Abnormal stop

14 ITLC Torque limit control is turn ON

15 Reserved --

Operation Theory 113

4.10 E-Gear

This function is used to adjust the command pulse number of one
revolution (Resolution) for a servo system.

Users must set the “User define resolution” before motion starts.

User-defines resolution = 2N; N= 12 ~ 18

 (Axis parameter: PRA_EGEAR)

For example, by using Mitsubishi MR-J3A servo motor, its encoder
resolution is 262144 pulse / rev. The following table shows the
relationship between parameter N, user-define resolution and
move ratio R.

114 Operation Theory

When N = 13, (R = 32)

Programming flow example:

Flow Corresponding functions

Initial cards

Set servo
resolution

Motion Control

APS_set_axis_param()

APS_initial()

APS_set_servo_on()

APS_velocity_move()
…

Operation Theory 115

4.11 DSP-based Closed-loop Control

4.11.1 Closed-loop Control

In order to solve open loop gantry problem, the PCI-8253/6 can
realize the gantry control with close-loop system. The control
architecture is shown as below:

 Pcommand: Position command

 Pfeedback: Position feedback

 d/dt: Differential operator

 Kff: Velocity feed forward gain (0 - 100%)

 PID: Controller gains contents Kp, Kd, Ki

The closed-loop control is relating to any system in which the com-
mand output was measured and compared to the feedback input.
The command output is adjusted to reach the desired condition.

In motion control, the closed-loop control means a system utilizing
an incremental encoder to generate correction signals in relation
to desired parameters.

Servo systems are the most prevalent example of closed loop
control. In a typical servo system, a motion operation is executed
after the user issued a move command to the servo controller. The
controller will calculate a velocity profile matching previously
defined user trajectory which included the maximum velocity,
acceleration, and deceleration parameters, etc. The controller
applies a position/velocity command to the servo amplifier. Based
on feedback from an incremental encoder the servo controller cal-
culates the following error (difference between the actual position
and the calculated position). The following error value is used to

116 Operation Theory

the PID filter to adjust the magnitude of the position / velocity com-
mand to the amplifier.

The significant advantage of a closed-loop system is that based
on the constant corrections by the PID filter of the command volt-
age that based on the measured following error. The PID filter to
properly respond to a given following error which the servo must
be tuned. Tuning a servo parameter is a process in which the PID
filter gain values are defined so that the response of the servo sys-
tem to a given following error meets the requirements of the
machine designer. Compared to an open loop system, which does
not require PID filter tuning, the requirement of tuning a servo
makes the setup of a closed-loop system a more complicated.

4.11.2 PID Filter Plus Feed Forward Gain

Proportional-integral-derivative, or PID, control is the most com-
mon type of controller used in industry. Depending on the specific
application, any of the three components of PID can be imple-
mented alone or in combination with another.

A proportional controller is the simplest and easiest to understand.
In a typical system using proportional control, a desired setting or
setpoint is compared to the output feedback signal. Proportional
control, however, has limitations. A proportional controller cannot
achieve a zero steady-state error. Increasing the gain in the sys-
tem can decrease the steady-state error somewhat. However,
when the gain is too high, the system overcorrects and may cause
instability. Because a proportional controller cannot reduce the
steady-state error to zero, it is used primarily in processes where
gain can be made sufficiently large to reduce steady-state error,
while at the same time maintain stability.

Proportional plus integral control (PI Controller)

In systems where the amount of error generated from a propor-
tional controller cannot be tolerated, a technique is needed to
respond to the steady-state error and drive it toward a smaller
value, ideally zero. This technique is known as proportional plus
integral, or PI, control.

A PI controller continuously adds up or integrates the error. An
integrator by itself, with a constant input, would essentially provide

Operation Theory 117

an ever increasing output signal. However, used in conjunction
with a proportional controller, as the error signal is integrated, the
proportional control drives the error to a smaller value. It accom-
plishes the same effect as a large gain in a proportional controller
without the adverse effect on stability. Thus, PI control is used in
systems where the steady-state error must be reduced to smaller
levels than with proportional control alone.

Because the integral section of the control operates within a spe-
cific reaction time, as the error signal approaches zero, the output
from the proportional section goes to zero. However, because of
the time constant, there could be a significant output from the inte-
grator. This output causes the error to cross zero and create an
error in the opposite direction. The error crossing zero produces
overshoot which may cause instability. This tendency increases as
the proportional gain increases and the integral reaction time or
time constant is reduced.

A PI controller is used primarily in applications with frequent load
disturbances and a minimum of setpoint changes. In practical
applications using a PI controller, the proportional gain is set
somewhat smaller than for a proportional-only control. The integral
time constant is adjusted to provide either one overshoot or no
overshoot.

Proportional plus derivative control (PD Controller)

Integral control is added to decrease long term or steady-state
error. However, the faster and larger the process error, the greater
the overshoot becomes, and the longer it takes to settle to an
acceptable level. To deal with fast response times and large
errors, derivative control is added.

Derivative control reduces the amount of time required for the out-
put to return to the setpoint. It also reduces initial overshoot and
has a stabilizing effect by damping the overshoot or oscillation.
This permits the proportional gain to be set at higher values than
with proportional-only control, and improves response time to sys-
tem disturbances.

Derivative control is always used with proportional or PI control
because it isn't capable of maintaining the error signal under

118 Operation Theory

steady-state control. It is used in applications that have sudden
and relatively large disturbances.

PID controller

Each of the three above individual controllers has advantages.
The proportional controller is the basic model. Increasing propor-
tional gain to improve response produces instability. Integral con-
trol adds a complement which has a major effect on reducing long
term errors. The derivative control has a major effect on transient
disturbances when the proportional controller cannot respond fast
enough.

The PID controller reduces steady-state error and responds rap-
idly to moves. Each has its own adjustment, and the various con-
trol adjustments interact.

Starting with the proportional control, gain is adjusted as high as
possible to obtain adequate response to a change. When the inte-
gral component is added, the proportional gain must be reduced. If
the integral reaction time constant is too fast (integral gain too
large), it tends to become unstable. Adding the derivative compo-
nent lets the proportional gain increase.

Feed forward Gain

In applications where the controller must compute and react
quickly, it may happen that the controller cannot drive the error to
zero fast enough to maintain precise position control. To overcome
this, another technique called feed forward gain is used. This is a
predictive type of control. In a typical feedback control system with
an inner velocity and an outer position-control loop, velocity and
acceleration feed forward is added after the position loop to the
velocity loop. Predictive control depends upon earlier conditions,
thus the signal has to bypass the position loop. In other words, the
setpoint is compared to the next step in the process rather than
the output. High-speed servo positioning applications, such as
some robotics and X-Y-Z positioning systems, make use of this
technique.

Tuning for an application

Tuning a controller refers to adjusting individual control parame-
ters. This is first tested off-line with no load attached, then

Operation Theory 119

switched on-line with a load or the process running. The parame-
ters of the PID are fine tuned to obtain the best response for the
application. In a typical motion-control application with a velocity
and position loop, the velocity-loop parameters must first be
adjusted then the position-loop parameters.

If the gain is increased too much, the system becomes unstable
and rings or oscillates. A motor typically produces an audible
noise when the gain is set too high.

Sampling window for PID tuning and profile observation

The following illustrations present the PID tuning procedure and
show the performance after adjusted PID parameters. ADLINK
offers the sampling windows to analysis the motion profile
instantly. By using the sampling window to observe the profile
behavior after the parameters of PID and feed forward gain was
tuned.

120 Operation Theory

Operation instructions:

Block A: Vertical scale adjustment. The scale will be automatic
adjusted when data is sampled. Users still can use the manual
adjustment component to adjust the vertical scale and position.
Users can also restore the automatic adjustment results by press-
ing Auto button. The unit of the channels will be displayed at bot-
tom side too.

Block B: Scale alignment setting. Users can choose one channel
which others will be aligned to. The aligned channels can be
selected by check box of channels.

Block C: Sampling scope. Right click mouse button brings up
measurement cursor. Users can use zoom in/out slider bar and
shift slider bar to adjust the horizontal position and scale of the
graph.

Block D, Tab1: Channel selections. There are four channels in the
scope. Each channel can be chosen from any axes. Each chan-
nel’s signal source can be chosen from the pull-down menu. The
sampling mode can be selected as single trigger or repeat trigger
mode. The start and stop sampling buttons are in this area too.

Operation Theory 121

Block D, Tab2: Trigger condition for sampling. Users can select
active channels and trigger source channels. The trigger condi-
tions are selected from rising or falling edge of the signal. In this
area, users can also set the sampling rate, total sampled points,
pre-triggered percentage and trigger level. The unit of trigger level
will changed automatically by selected trigger channel.

122 Operation Theory

Block D, Tab3: Measuring cursor area. There are time probe cur-
sor in vertical and value probe cursor in horizontal. It will display
each cursor’s time or value and their subtraction value.

Operation Theory 123

Block D, Tab4: PID setting area. Users can select one axis to
tune the dynamic response. There are P, I, D and FF gain for one
axis. If using gantry mode, there are two additional gains, KGTY
and KGPTY for cross-coupling tuning. In this page, it also displays
current error position for steady state reference and the parame-
ter’s denominator. It means if KP=1500 and demoninator=10000,
that means the actual KP in the control loop is 0.15.

124 Operation Theory

Tuning by Step Response

Operation Instructions:

1. Create a step input speed profile by setting VS,VM,VE at
the same value. Once they are at the same value, the
motion kernel will ignore acceleration and deceleration
time.

2. First, set a KP value to watch its response. Normally, we
will increase the KP gradually until we see the oscillation
response.

3. In the above example, we set KP to 1500 and see the
oscillation response. You can see that the error position
is not zero due to DC gain or other factor.

Operation Theory 125

Operation Instructions:

4. Try to add KI gain to eliminate DC gain which results in
steady state error.

5. We set a value 8000 and the position error converges in
an acceptable time.

6. But the response still has overshoot.

126 Operation Theory

Operation Instructions:

7. Try to suppress the overshoot by adding KD gain.

8. We add 1 in KD gain and see it does suppress the over-
shoot.

9. It becomes a less under-damped system and the steady
state error remains kept at 0

Operation Theory 127

Operation Instructions:

10.Try to increase the KD value to 2 and it becomes an
over-damped system

128 Operation Theory

Operation Instructions:

11.Try the other method to tune the system. We will use Kff
this time. It can increase the response time and reduce
following error.

12.Set a smaller KP value to 1000 than previous method.

13.You can see the overshoot is smaller than before but the
following error is bigger.

Operation Theory 129

Operation Instructions:

14.Try to add Kff to 6000 and reduce KP. We can see the
overshoot is smaller and following error is smaller too.

130 Operation Theory

Operation Instructions:

15.Now, try to eliminate the steady state error by adding KI
gain to 6000.

16.You can see the error is 0 but the stable time is longer.
That’s a trade-off.

17.Users can try more combinations to fit their key require-
ments

Operation Theory 131

Operation Instructions:

18.If we use the step response tuning results on a trapezoi-
dal profile, we can get a good response too.

132 Operation Theory

Operation Instructions:

19.If we use the step response tuning results on a S-curve
profile, we can get a good response too.

Operation Theory 133

Operation Instructions:

20.We can also use PID step response tuning results for
trapezoidal profile and S-curve profile.

134 Operation Theory

Operation Theory 135

4.11.3 Gantry Mode

Gantry function is defind from mechanical structure. Normally we
have two motors controlling two parallel linear stages. These two
motors must move similutaneously. The motion controller must
control these two motors individually but synchronously. It looks
like 1:1 electric gearing in master-slave motion and also looks like
1:1 interpolation motion of two axes. If using ASIC motion, you can
use linear motion function of two axes to achieve this function at
PC side. It is only for command pulse synchronization. Some
applications, especially on unbalanced heavy loading conveyor
system, it doesn’t work perfectly because of open loop architech-
ture. Please see the following diagram:

If the gantry X1 and X2 has different loading and servo parame-
ters, these two axes will not move simultaneously.

Controller

Motor

Screw ball & guider

Driver X1

Moving

Pulses Cmd

Motor

Screw ball & guider

Driver X2

Moving

Gantry X1

Gantry X2

Pulse Command

Gantry X1

Gantry X2

136 Operation Theory

4.11.4 Closed-loop Gantry Mode

In order to solve open loop gantry problem, we use PCI-8392/
8392H to make a closed loop system to control gantry stage. The
control architechture is shown as below:

Gantry X1

Gantry X2

DSP-based
Controller

Motor

Screw ball & guider

Driver X1

Encoder

Moving

Pulses F/B

Pulses Cmd

Motor

Screw ball & guider

Driver X2

Encoder

Moving

Pulses F/B

Pulse Command

Gantry X2

Sink Type

Error < (pre-defined range)

Operation Theory 137

4.12 Position Compared and Trigger pulse ouput

4.12.1 Architecture

The PCI-8253/6 provides 2/4 trigger output channels where 1/2 of
them is applied to high-speed position compared function and up
to 1 MHz trigger pulse output. Other 1/2 channels are applied to
low-speed application and support pulse output frequency up to 25
KHz at least. Inside the PCI-8253/6, all the position comparison
and mapping tasks will be executed within the FPGA. The function
block figures as following:

4.12.2 Encoder Channels

The FIFO will automatically load the comparing points into 32-bit
comparator herein. User is able to set the comparing source as
four encoder inputs and two timer channels. Due to mapping logic
setting, the several combinations are provides for user to perform
continuously trigger output function. The comparator will compare
the data from counter and FIFO individually. Besides, the compar-
ator is also able to compare the counter and comparing data which
was produced by embedded Linear function. At very short time,
user can retain and retrieve the current counter data by general
purposed digital input. Linear function will automatically load the
ext comparing points with fixed incremental value into 32-bit com-
parator. Like FIFO usage purpose, the new comparing points will

Timer (1) PWM (4) Mapping (4)

Linear
Function

(2)

FIFO
(2)

Counter (4)

Latch
Register

(4)

Manual
Trigger

(4)

Comparator
(4)

Encoder
Channel (4)

TTL
Differential

Trigger
Output (4)

EZ Clr
(2)

EZ / ORG
(2)

138 Operation Theory

be loaded once the previous comparing point is compared and
pulse is triggered.

The PCI-8253/6 has a 32-bit binary up/down counter managing
the present position feedback for whole dual channel.

It accepts 2 types of pulse inputs: (1). Dual pulse mode (CW/
CCW) (2) 90° phase shifted signals (AB phase mode). 90° phase
shifted signals maybe multiplied by a factor of 1, 2 or 4. 4x AB
phase mode is the most commonly used in incremental encoder
inputs. For example, if a rotary encoder has 2000 pulses per
phase (A or B phase), then the value read from the counter will be
8000 pulses per turn or –8000 pulses per turn depending on its
rotating direction. The three options will be explained as follows.

Dual Pulse Mode (CW/CCW Mode)

In this mode, EA is dedicated to count the pulses from external
source and view it as clockwise direction (CW). EB is dedicated to
count the pulses from external source and view it as counterclock-
wise direction (CCW). Simply put, EA counts up and EB counts
down. User can decide the normal high or normal low for those
two channels according to users’ devices. The following diagrams
show the normal high and normal low cases individually.

Negative direction

Positive direction

Negative direction

Positive direction

EA

EB

EA

EB

EA

EB

EA

EB

CW

CCW

CW

CCW

CW

CCW

CW

CCW

Normal High

Normal Low

Operation Theory 139

90° phase shifted signals (AB phase Mode)

In this mode, EA signal is a 90° phase leading or lagging to EB
signal. “Lead” or “lag” of phase difference between two signals is
caused by the turning direction of the motor. The up/down coun-
ters counts up when the phase of EA signal leads the phase of EB
signal.

The following diagram shows the waveform.

4.12.3 Index Input (EZ)

The PCI-8253/6 can clear the counter value as zero according to
the edge of EZ signal. Homing by edge can let users meet best
homing positioning purpose. Rising or falling edge is supported.
The following diagram shows the case about the homing by rising
edge.

EA

EB

EA

EB

Positive direction

EZ

Counter
Operation

Counter
Reset

140 Operation Theory

4.12.4 Trigger Pulse Width

For different applications, the trigger pulse width requirement is
different. As for this reason, the trigger pulse width can be adjust-
able. The available values are from 0.2us to 6.55ms. The maxi-
mum frequency is up to 1 MHz.

4.12.5 Linear Function

Linear function is used to generate a new comparing position point
by a fixed incremental value linear function, D=D’ + A. D means a
calculated comparing position, the linear data. D’ means a previ-
ous comparing position. Every time the position was compared,
hence a new data is calculated by adding ‘A’, the fixed incremental
value. User can implement a continuous triggering function
promptly by using linear function trigger.

There are 2 linear functions in PCI-8253/6 which supports to each
PWM channel individually and each function is independent. It
allows that linear function range overlapped is possible when sys-
tem operating. Each linear function has its own comparator and
the comparator could be linked to any one of two counters. By this
features, users can produce many kinds of trigger modes. Please
see the following diagrams:

Pulse Width

Operation Theory 141

Take two linear functions. Set the trigger interval and range as
shown in the diagram. Set these two linear functions to counter0
and also comparator0. Set two linear functions to same trigger
output pin TRG1. After these settings, when the counters start
counting from 0 to 10,000, the trigger pins will output pulses
respectively when the compare conditions are met inside linear
function. From TRG1 pins, the trigger pulse output will be
observed which was generated by linear function 1 and linear
function 2 sequentially.

For other case, when the counters start counting from 0 to 10,000,
the trigger pins will output pulses respectively when the compare
conditions are met inside linear function. This diagram is also able
to present the overlap status of TRG1 output if makes TRG 2
instead of TRG1.

4.12.6 FIFO Function

FIFO is first-in-first-out storage. It is used for storing some preset
position data for comparing. Every time the position is compared,
a new data is retrieve from FIFO into comparator. This mechanism
makes a the continuous triggering function.

Continuous triggering is fulfilled by linear function and FIFO.
These two modes have their own comparators and can be used at
the same time. The FIFO mode is usually used on random com-
paring data condition. Users can preset these data into FIFO and
perform continuous triggering. In PCI-8253/6, there are two FIFO
and have the capacity with 15 comparing data space. The FIFO
support to anyone of four PWM channels.

142 Operation Theory

4.12.7 PWM & Mapping function

PWM is used for adjusting pulse width of trigger. It could also be
switched to a toggle mode. In this mode, the pulse level will
change from low to high or high to low at every time when com-
pared.

Mapping means eight trigger signals are not one-to-one mapping
to three comparators. Trigger output channels are able to , For
example, Comparator 1 could be linked to trigger channel 2. Com-
parator 2 could be linked to trigger channel 1 and 4. Comparator 2
and 4 could be linked to channel 3.

4.12.8 Position Comparison

The PCI-8253/6 provides position comparison functions for 2/4
channels. Once the counter reaches a preset value set by the
user, the PCI-8253/6 will generate the trigger pulse. TRGx pins
are for trigger pulse output channels which were designed by TTL
differential output type. Therefore, the differential signal is able to
reduce noise-effect efficiently while trigger pulse signal transmit-
ting.

The comparing method is “equal”. Consequently, when the coun-
ter value is exactly equal to the pre-set value by users, the trigger
pulse will be generated.

At the same time, the next comparing points saved in FIFO or lin-
ear function will automatically loaded into comparator. The follow-
ing is an example for continuous trigger application.

Operation Theory 143

Example: Using the continuous position comparison function.

In this application, the table is controlled by the motion command,
and the CCD Camera is controlled by the position comparison out-
put of the PCI-8253/6. An image of the moving object is easily
obtained.

4.12.9 Position Latch

The position latch function is fulfilled by EZ/ORG signal. Once the
EZ/ORG signal is active, the counter value of its latch channel will
be saved to latched counter value at the same time. User can read
the latch register any time.

4.12.10Timer Function

There is a timers on PCI-8253/6. The timer can be set to counters
to simulate encoder inputs. It can also output to trigger pins
directly. The timer is designed by a down-counter. Users must set
a counter value into timer for down counting. Once the timer coun-
ter reaches zero, the timer will output a pulse to trigger pin or
increase encoder counter by 1. The down counting speed is 100ns
and the maximum counter value is 30-bit. User can set the timer
interval from 100ns to 26ms.

144 Operation Theory

MotionCreatorPro 2 145

5 MotionCreatorPro 2
After installing the hardware (Chapters 2 and 3), it is necessary to
correctly configure all cards and double check the system before
running. This chapter gives guidelines for establishing a control
system and manually testing the cards to verify correct operation.

The MotionCreatorPro 2 software provides a simple yet powerful
means to setup, configure, test, and debug a motion control sys-
tem that uses 8253/6 cards.

Note that MotionCreatorPro2 is only available for Windows 2000/
XP with a screen resolution higher than 1024x768. Recommended
screen resolution is 1024x768. It cannot be executed under the
DOS environment.

5.1 Execute MotionCreatorPro 2

After installing the software drivers for the card in Windows 2000/
XP, the MotionCreatorPro 2 program can be located at <chosen
path >\PCI-Motion\MotionCreatorPro2. To execute the program,
double click on the executable file or use Start -> Program Files -
> ADLINK -> PCI-8253/6 -> MotionCreatorPro 2.

5.2 About MotionCreatorPro 2

Before running MotionCreatorPro 2 please note that MotionCre-
atorPro 2 is a program written in VB.NET 2003, and is available
only for Windows 2000/XP with a screen resolution higher than
1024x768. It cannot be run under DOS.

146 MotionCreatorPro 2

5.3 MotionCreatorPro 2 Forms

5.3.1 Main Menu

The main menu appears after running MotionCreatorPro 2. Refer
to the following illustrations for a description of the available func-
tions:

A. Initial options for manual or auto ID and axis parameter
loading mode. All the settings will be active the next time
MotionCreatorPro 2 runs.

B. Icons for operation modes. Some will be active when a
motion item in the tree view is selected and some will be
active when an axis item is selected.

D

BA

C

MotionCreatorPro 2 147

Button Functions: Use these buttons to select function you want
test.

 Configuration

Button Function Description

SSCNET Connect Connect axis. Please select
baud rate at button right side
and connect.

* PCI-8392/8392H only

SSCNET Disconnect Disconnect axis.

* PCI-8392/8392H only

Axis/Board
Configuration

Configure axis or board
parameter.

SSCNET Servo
Parameter
Configuration

Configure parameter of
MITSUBINSHI J3 Servo Driver.

* PCI-8392/8392H only

148 MotionCreatorPro 2

 Movement

Button Function Description

Single Movement Single Axis movement (PTP),
includes absolute and relative
functions.

Home Return
Movement

Home return movement.

Interpolation Interpolation function.

Sampling Sampling function, it can select
source and drew its profile.

2D Movement Execute 2D motion movement

MotionCreatorPro 2 149

 HSL

 Others

Button Function Description

HSL Connect Connect HSL module. Please
select the baud rate at the right
side of the button and connect.

* PCI-8392 only

HSL Disconnect Disconnect HSL module.

* PCI-8392 only

HSL Module Test If connected correctly, select the
module and use this to perform
a module test.

* PCI-8392 only

Button Function Description

Gantry Motion Execute gantry motion
manipulation and tune the cross-
coupling gain value.

Position Compare
and Trigger Output

Fill the compared position and
select comparison methods.

Monitor I/O Status Includes DI/O, AI/O, and
encoder counter values

150 MotionCreatorPro 2

C. Displays all motion boards found by MotionCreatorPro 2.
The tree view can display both motion axes and field bus
I/O.

D. Board information (software, firmware, and hardware ver-
sions).

ICON Function Description

(Yellow) Warning Servo Warning

(Red) Alarm Servo Alarm

(Black) Normal (Servo OFF) No Error and servo off

(Green) Normal (Servo ON) No Error and servo on

MotionCreatorPro 2 151

5.3.2 Parameter Management

A. Parameter type display

B. Parameter values of all axes

C. Parameter management button to load/save parameters.
Set to card must be used to activate this table.

Hint: Apply all parameters to other axes with the right mouse button.

A

B

C

152 MotionCreatorPro 2

5.3.3 Single Movement

A. Command, feedback, error and target position information.
Command and feedback speed information. The minimum
speed value may limit by speed calculation cycle time for
low speed display.

B. Optional operation setting and button. The repeat mode
check box can be used in relative and absolute mode. The
axes will move between two positions or forward/backward
distance cyclically. You can set the delay time between each
move in unit of mini-second. The minimum value is 1 ms.
The stop button is for relative, absolute and velocity modes.

A

B

C
D

E

MotionCreatorPro 2 153

C. Operation buttons and setting for 4 modes. You can switch
operation between relative, absolute and velocity modes.
The parameters of each mode must be set before opera-
tion, such as position 1 & 2, forward/backward distance and
forward/backward velocity. Remember to set MaxVel before
executing relative and absolute mode. When using jog
mode, the other three modes will be disabled. There are two
options for job modes. One is free and the other is step. The
Jog parameters are set from axis parameter table. The step
offset in step mode can be set in this area too.

D. Interrupt factor setting area

E. Motion status, I/O status and interrupt status display area.

154 MotionCreatorPro 2

5.3.4 Home Return

A. Speed parameters of the homing profile. Please refer to the
figure in “F”.

B. Mode settings of homing functions. Select one of the items
inform the pull-down menu

C. Command and position information when homing. After
homing completes, the command counter will be reset to
zero at the edge of ORG ON when VA speed.

D. Operation button to start homing or stop/abort homing func-
tions.

E. Motion and I/O status when homing

F. The timing chart of the homing function.

A B

C D

E

F

MotionCreatorPro 2 155

5.3.5 Interpolation

A. Interpolation axes selection and operation parameter set-
tings, including center position in ARC mode or target posi-
tion in Linear mode. The arc angle parameter can be larger
than 360.

B. Absolute or relative interpolation mode selection. In ARC
mode, it is about center position. In Linear mode, it is about
target position.

C. Command and position information. In Arc mode, only two
of them will be active.

A B

C

156 MotionCreatorPro 2

5.3.6 General I/O Status

A. Digital I/O operation area. For the PCI-8253, there are only
0-3 bits available for operations.

B. Encoder counter display area in units of pulses

C. Analog input display area in units of voltage

D. Analog output operation area. You can drag the bar to make
analog output. The output value will be displayed too.

A B

C

D

MotionCreatorPro 2 157

5.3.7 Position Compare and Trigger Functions

A. Input counter selection for each trigger pin

B. The total triggered counts

C. Reset: reset triggered counts value. Manual: manual trigger
output when button is pressed.

D. Trigger parameter table settings

E. After the parameters are modified in the table above, press
the set to card button to activate them. You can press load
from card to above table too.

Hint: Any operation mode such as single axes for multi-axis oper-
ations can be used for input counter counting for testing trig-
ger counts.

A

B
C

D

E

158 MotionCreatorPro 2

	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Features
	1.2 Specifications
	1.3 Supported Software
	1.3.1 Programming Library
	1.3.2 MotionCreatorPro 2TM

	1.4 Compatible Terminal Boards

	2 Installation
	2.1 Package Contents
	2.2 PCI-8253/6 Outline Drawing
	2.3 PCI-8253/6 Hardware Installation
	2.3.1 Hardware Configuration
	2.3.2 PCI Slot Selection
	2.3.3 Installation Procedures
	2.3.4 Troubleshooting

	2.4 Software Driver Installation
	2.5 SP1/SP2 Pin Assignments: Main Connector
	2.6 (CB) SW1 Switch Setting for Card Index
	2.7 Daughter Board Switch (DB) SW1
	2.8 CN1 Pulsar Connector
	2.9 CN2/CN3 DSP Sychronous Signal Connector

	3 Signal Connections
	3.1 Analog Command Output Signals: AOUT
	3.1.1 Single-ended Type Signal: AOUT+
	3.1.2 Differential Type Signals: AOUT+ / AOUT-

	3.2 Analog Input Signals: AIN
	3.3 Trigger Pulse Output Signals: TRG+, TRG-
	3.4 Encoder Feedback Signals: EA, EB and EZ
	3.5 Origin Signal: ORG
	3.6 End-Limit Signals: PEL and MEL
	3.7 Zero Speed Signal: ZSP
	3.8 Alarm Signal: ALM
	3.9 Servo ON Signal: SVON
	3.10 General-purpose Digital Output Signals: EDO
	3.11 General-purpose Digital Input Signals: EDI

	4 Operation Theory
	4.1 Classifications of Motion Controller
	4.1.1 Analog Type Motion Control Interface
	4.1.2 Pulse Type Motion Control Interface
	4.1.3 Network Type Motion Control Interface
	4.1.4 Software Real-time Motion Control Kernel
	4.1.5 ADLINK Softmotion DSP
	4.1.6 ASIC Motion Control Kernel
	4.1.7 Comparison Table Of All Motion Control Types
	4.1.8 PCI-8253/6’s Motion Controller Type

	4.2 Single Motion
	4.2.1 Single Axis Velocity Motion
	4.2.2 Single Axis P-to-P Motion
	4.2.3 Linear Interpolation
	4.2.4 Circular Interpolation
	4.2.5 Speed Override
	4.2.6 Position Override

	4.3 Home Move
	4.4 Jogging
	4.5 Point Table
	4.5.1 Point Table Construction
	4.5.2 Point index
	4.5.3 Point table execution

	4.6 Motion Status and Related IO Monitoring
	4.6.1 Position Control and Feedback
	4.6.2 Velocity Feedback
	4.6.3 Motion I/O Status
	4.6.4 Motion Status

	4.7 Driver Management
	4.7.1 Servo On

	4.8 Data Sampling
	4.9 Interrupt Control
	4.10 E-Gear
	4.11 DSP-based Closed-loop Control
	4.11.1 Closed-loop Control
	4.11.2 PID Filter Plus Feed Forward Gain
	4.11.3 Gantry Mode
	4.11.4 Closed-loop Gantry Mode

	4.12 Position Compared and Trigger pulse ouput
	4.12.1 Architecture
	4.12.2 Encoder Channels
	4.12.3 Index Input (EZ)
	4.12.4 Trigger Pulse Width
	4.12.5 Linear Function
	4.12.6 FIFO Function
	4.12.7 PWM & Mapping function
	4.12.8 Position Comparison
	4.12.9 Position Latch
	4.12.10 Timer Function

	5 MotionCreatorPro 2
	5.1 Execute MotionCreatorPro 2
	5.2 About MotionCreatorPro 2
	5.3 MotionCreatorPro 2 Forms
	5.3.1 Main Menu
	5.3.2 Parameter Management
	5.3.3 Single Movement
	5.3.4 Home Return
	5.3.5 Interpolation
	5.3.6 General I/O Status
	5.3.7 Position Compare and Trigger Functions

