
Advance Technologies; Automate the World.

Manual Rev. 2.00

Revision Date: August 5, 2006

Part No: 50-11139-1000

PCI-8158
High Density & Advanced

8-Axis Servo / Stepper
Motion Control Card
User’s Manual

Copyright 2006 ADLINK TECHNOLOGY INC.

All Rights Reserved.

The information in this document is subject to change without prior
notice in order to improve reliability, design, and function and does
not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, spe-
cial, incidental, or consequential damages arising out of the use or
inability to use the product or documentation, even if advised of
the possibility of such damages.

This document contains proprietary information protected by copy-
right. All rights are reserved. No part of this manual may be repro-
duced by any mechanical, electronic, or other means in any form
without prior written permission of the manufacturer.

Trademarks

NuDAQ, NuIPC, DAQBench are registered trademarks of ADLINK
TECHNOLOGY INC.

Product names mentioned herein are used for identification pur-
poses only and may be trademarks and/or registered trademarks
of their respective companies.

Getting Service from ADLINK
Customer Satisfaction is top priority for ADLINK Technology Inc.
Please contact us should you require any service or assistance.

ADLINK TECHNOLOGY INC.
Web Site: http://www.adlinktech.com
Sales & Service: Service@adlinktech.com
TEL: +886-2-82265877
FAX: +886-2-82265717
Address: 9F, No. 166, Jian Yi Road, Chungho City,

Taipei, 235 Taiwan

Please email or FAX this completed service form for prompt and
satisfactory service.

Company Information

Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX:
Web Site

Product Information
Product Model

Environment
OS:
M/B: CPU:
Chipset: BIOS:

Please give a detailed description of the problem(s):

Table of Contents i

Table of Contents
Table of Contents... i

List of Tables... v

List of Figures .. vi

1 Introduction .. 1
1.1 Features... 5
1.2 Specifications... 6
1.3 Supported Software ... 8

Programming Library .. 8
MotionCreatorPro ... 8

1.4 Available Terminal Board... 8

2 Installation .. 9
2.1 Package Contents ... 9
2.2 PCI-8158 Outline Drawing ... 10
2.3 PCI-8158 Hardware Installation... 10

Hardware configuration ... 10
PCI slot selection .. 11
Installation Procedures ... 11
Troubleshooting .. 11

2.4 Software Driver Installation.. 12
2.5 P1/P2 Pin Assignments: Main Connector.......................... 13
2.6 K1/K2 Pin Assignments: Simultaneous Start/Stop 14
2.7 J1 to J16 Jumper Settings for Pulse Output 15
2.8 S1 Switch Settings for Card Index 16
2.9 P3 Manual Pulse.. 17

3 Signal Connections.. 19
3.1 Pulse Output Signals OUT and DIR 20
3.2 Encoder Feedback Signals EA, EB and EZ....................... 23

Connection to Line Driver Output 25
Connection to Open Collector Output 25

3.3 Origin Signal ORG ... 27
3.4 End-Limit Signals PEL and MEL.. 28
3.5 In-position Signal INP .. 29
3.6 Alarm Signal ALM .. 30

ii Table of Contents

3.7 Deviation Counter Clear Signal ERC................................. 31
3.8 General-purpose Signal SVON.. 32
3.9 General-purpose Signal RDY .. 33
3.10 Multi-Functional output pin: DO/CMP 34
3.11 Multi-Functional input pin: DI/LTC/SD/PCS/CLR/EMG...... 35
3.12 Pulse Input Signals PA and PB (PCI-8158) 36
3.13 Simultaneously Start/Stop Signals STA and STP.............. 37

4 Operation Theory .. 41
4.1 Classifications of Motion Controller.................................... 41

Voltage type motion control Interface 41
Pulse type motion control Interface 42
Network type motion control Interface 42
Software real-time motion control kernel 42
DSP based motion control kernel 43
ASIC based motion control kernel 43
Compare Table of all motion control types 44
PCI-8158’s motion controller type 44

4.2 Motion Control Modes.. 45
Coordinate system .. 45
Absolute and relative position move 46
Trapezoidal speed profile ... 47
S-curve and Bell-curve speed profile 47
Velocity mode ... 49
One axis position mode .. 50
Two axes linear interpolation position mode 51
Two axes circular interpolation mode 52
Continuous motion .. 53
Home Return Mode .. 55
Home Search Function ... 63
Manual Pulse Function ... 64
Simultaneous Start Function ... 64
Speed Override Function .. 65
Position Override Function ... 65

4.3 The motor driver interface.. 66
Pulse Command Output Interface 66
Pulse feedback input interface 68
In position signal ... 70
Servo alarm signal .. 71
Error clear signal ... 71

Table of Contents iii

Servo ON/OFF switch ... 71
Servo Ready Signal .. 72
Servo alarm reset switch .. 72

4.4 Mechanical switch interface... 72
Original or home signal ... 73
End-Limit switch signal ... 73
Slow down switch ... 73
Positioning Start switch ... 73
Counter Clear switch .. 74
Counter Latch switch .. 74
Emergency stop input ... 74

4.5 The Counters ... 74
Command position counter ... 75
Feedback position counter .. 75
Command and Feedback error counter 75
General purpose counter .. 76
Target position recorder .. 76

4.6 The Comparators... 77
Soft end-limit comparators .. 77
Command and feedback error counter comparators 77
General comparator .. 77
Trigger comparator ... 78

4.7 Other Motion Functions ... 78
Backlash compensation and slip corrections 79
Vibration restriction function ... 79
Speed profile calculation function 79

4.8 Interrupt Control... 80
4.9 Multiple Card Operation... 84

5 MotionCreatorPro... 85
5.1 Execute MotionCreatorPro .. 85
5.2 About MotionCreatorPro .. 86
5.3 MotionCreatorPro Form Introducing 87

Main Menu .. 87
Select Menu .. 88
Card Information Menu ... 89
Configuration Menu .. 90
Single Axis Operation Menu ... 95
Two-Axis Operation Menu .. 102
2D_Motion Menu .. 105

iv Table of Contents

Help Menu .. 111

6 Function Library.. 113
6.1 List of Functions... 114
6.2 C/C++ Programming Library .. 122
6.3 System & Initialization.. 123
6.4 Pulse Input/Output Configuration..................................... 127
6.5 Velocity mode motion... 130
6.6 Single Axis Position Mode ... 134
6.7 Linear Interpolated Motion ... 138
6.8 Circular Interpolation Motion .. 149
6.9 Home Return Mode.. 159
6.10 Manual Pulser Motion .. 162
6.11 Motion Status ... 165
6.12 Motion Interface I/O ... 167
6.13 Interrupt Control ... 175
6.14 Position Control and Counters ... 179
6.15 Position Compare and Latch.. 184
6.16 Continuous motion ... 189
6.17 Multiple Axes Simultaneous Operation 191
6.18 General-purpose DIO... 194
6.19 Soft Limit .. 196
6.20 Backlash Compensation / Vibration Suppression 198
6.21 Speed Profile Calculation... 200
6.22 Return Code... 204

7 Connection Example .. 207
7.1 General Description of Wiring .. 207
7.2 Terminal Board User Guide ... 207

Warranty Policy ... 209

List of Tables v

List of Tables
Table 1-1: Available Terminal Boards .. 8
Table 2-1: P1/P2 Pin Assignments .. 13
Table 2-2: K1/K2 Pin Assignments .. 14
Table 2-3: J1 to J16 Jumper Settings 15
Table 2-4: S1 Switch Settings .. 16
Table 2-5: P3 Manual Pulse .. 17
Table 3-1: Pulse Output Signals OUT (P1) 20
Table 3-2: Pulse Output Signals OUT (P2) 21
Table 3-3: Output Signal .. 22
Table 4-1: Motion Interrupt Source Bit Settings 81
Table 4-2: Error Interrupt return codes 82
Table 4-3: GPIO Interrupt Source Bit Settings 83

vi List of Figures

List of Figures
Figure 1-1: Block Diagram of the PCI-8158 2
Figure 1-2: Flow chart for building an application 4
Figure 2-1: PCB Layout of the PCI-8158 10

Introduction 1

1 Introduction
The PCI-8158 is an advanced & high-density 8-axis motion con-
troller card with a PCI interface. It can generate high frequency
pulses (6.55MHz) to drive stepper or servomotors. As a motion
controller, it can provide 8-axis linear and circular interpolation and
continuous interpolation for continuous velocity. Changing posi-
tion/speed on the fly is also available with a single axis operation.

Multiple PCI-8158 cards can be used in one system. Incremental
encoder interfaces on all eight axes provide the ability to correct
positioning errors generated by inaccurate mechanical transmis-
sions.

The PCI-8158 is a brand new design. The carrier board has 8-axis
pulse train output control channels. For additional functions, such
as high-speed triggering or distributed I/O control, users can add
on daughter boards depending on requirements. The board has a
position compare function. For line scan applications, a motion
controller is needed to generate high speed triggering pulse and
gain the high resolution images. In this situation, adopt a DB-8150
to extend the function on PCI-8158. Not only designed for motion
control, the sensors and actuator are also key elements in
machine automation. Usually, I/O is needed to integrate the sen-
sors and actuators in the controller. ADLINK also provides another
way to connect these devices – distributed I/O. A daughter board
can be used to achieve distributed I/O with the PCI-8158. This
configuration can save the wiring effort and physical controller
size, and is also cost-effective.

Figure 1-1 shows the functional block diagram of the PCI-8158
card. Motion control functions include trapezoidal and S-curve
acceleration/deceleration, linear and circular interpolation between
two axes and continuous motion positioning, and 13 home return
modes. All these functions and complex computations are per-
formed internally by the ASIC, saving CPU loading.

The PCI-8158 also offers three user-friendly functions.

1. Card Index Setting:

PCI-8158 can assign the card index with the DIP switch setting.
The value is within 0 to 15. It is useful for machine makers to

2 Introduction

recognize the card index if the entire control system is very
large.

2. Emergency Input

The emergency input pin can let users wire the emergency bot-
tom to trigger this board to stop sending pulse output once
there is any emergency situation.

3. Software’s Security Protection

For security protection design, users can set the 16-bit value
into EEPROM. Your interface program can use this EEPROM
to secure the software and hardware in order to prevent plagia-
rist.

Figure 1-1: Block Diagram of the PCI-8158

Introduction 3

MotionCreatorPro is a Windows-based application develop-
ment software package included with the PCI-8158. Motion-
CreatorPro is useful for debugging a motion control system
during the design phase of a project. An on-screen display lists
all installed axes information and I/O signal status of the PCI-
8158.

Windows programming libraries are also provided for C++
compiler and Visual Basic. Sample programs are provided to
illustrate the operations of the functions.

4 Introduction

Figure 1-2 illustrates a flow chart of the recommended process
in using this manual in developing an application. Refer to the
related chapters for details of each step.

Figure 1-2: Flow chart for building an application

Introduction 5

1.1 Features
The following list summarizes the main features of the PCI-
8158 motion control system.

32-bit PCI bus Plug and Play (Universal)
8 axes of step and direction pulse output for controlling
stepping or servomotor
Maximum output frequency of 6.55 MPPS
Pulse output options: OUT/DIR, CW/CCW
Programmable acceleration and deceleration time for all
modes
Trapezoidal and S-curve velocity profiles for all modes
2 to 4 axes linear interpolation
2 axes circular interpolation
Continuous interpolation for contour following motion
Change position and speed on the fly
13 home return modes with auto searching
Hardware backlash compensator and vibration suppression
2 software end-limits for each axis
28-bit up/down counter for incremental encoder feedback
Home switch, index signal (EZ), positive, and negative end
limit switches interface on all axes
8-axis high speed position latch input
8-axis position compare and trigger output (Not for high
speed. For high speed triggering output, users need to buy
DB-8150 for extension.)
All digital input and output signals are 2500Vrms isolated
Programmable interrupt sources
Simultaneous start/stop motion on multiple axes
Manual pulse input interface
Card index selection
Security protection on EERPOM
Dedicated emergency input pin for wiring
Software supports a maximum of up to 12 PCI-8158 cards

6 Introduction

operation in one system
Compact PCB design
Includes MotionCreatorPro, a Microsoft Windows-based
application development software
PCI-8158 libraries and utilities for Windows 2000/XP.

1.2 Specifications
Applicable Motors:

Stepping motors
AC or DC servomotors with pulse train input servo driv-
ers

Performance:
Number of controllable axes: 8
Maximum pulse output frequency: 6.55MPPS, linear,
trapezoidal, or S-Curve velocity profile drive
Internal reference clock: 19.66 MHz
28-bit up/down counter range: 0-268,435,455 or –
134,217,728 to +134,217,727
Position pulse setting range (28-bit): -134,217,728 to
+134,217,728
Pulse rate setting range (Pulse Ratio = 1: 65535):

0.1 PPS to 6553.5 PPS. (Multiplier = 0.1)
1 PPS to 65535 PPS. (Multiplier = 1)

Introduction 7

100 PPS to 6553500 PPS. (Multiplier = 100)
I/O Signales:

Input/Output signals for each axis
All I/O signal are optically isolated with 2500Vrms isola-
tion voltage
Command pulse output pins: OUT and DIR
Incremental encoder signals input pins: EA and EB
Encoder index signal input pin: EZ
Mechanical limit/home signal input pins: ±EL, ORG
Composite pins: DI / LTC(Latch) / SD(Slow-down) /
PCS(Position Change Signal) / CLR(Clear) /
EMG(Emergency Input)
Servomotor interface I/O pins: INP, ALM, and ERC
General-purposed digital output pin: SVON, DO
General-purposed digital input pin: RDY, GDI
Pulse signal input pin: PA and PB (With Isolation)
Simultaneous Start/Stop signal: STA and STP

General Specifications
Connectors: 68-pin SCSI-type connector
Operating Temperature: 0°C - 50°C
Storage Temperature: -20°C - 80°C
Humidity: 5 - 85%, non-condensing

Power Consumption
Slot power supply (input): +5V DC ±5%, 900mA max
External power supply (input): +24V DC ±5%, 500mA
max
External power supply (output): +5V DC ±5%, 500mA,
max

PCI-8158 Dimension (PCB size): 185mm(L) X 100 mm(W)

8 Introduction

1.3 Supported Software

1.3.1 Programming Library
Windows 2000/XP DLLs are provided for the PCI-8158 users.
These function libraries are shipped with the board.

1.3.2 MotionCreatorPro
This Windows-based utility is used to setup cards, motors, and
systems. It can also aid in debugging hardware and software
problems. It allows users to set I/O logic parameters to be
loaded in their own program. This product is also bundled with
the card.

Refer to Chapter 5 for more details.

1.4 Available Terminal Board
ADLINK provides the servo & steppers use terminal board for
easy connection. For steppers, we provide DIN-100S which is
pin-to-pin terminal board. For servo users, ADLINK offers DIN-
814M, DIN-814M-J3A, DIN-814Y and DIN-814P-A4. The suit-
able servos are listed as follows:

Table 1-1: Available Terminal Boards

Mitsubishi J2 Super DIN-814M
Mitsubishi J3A DIN-814M-J3A

Yaskawa Sigma II DIN-814Y
Panasonic MINAS A4 DIN-814P-A4

Installation 9

2 Installation
This chapter describes how to install the PCI-8158. Please follow
these steps below:

Check what you have (Section 2.1)
Check the PCB (Section 2.2)
Install the hardware (Section 2.3)
Install the software driver (Section 2.4)
Understanding the I/O signal connections (Chapter 3) and
their operation (Chapter 4)
Understanding the connector pin assignments and wiring
the connections (the remaining sections)

2.1 Package Contents
In addition to this User’s Guide, the package also includes the fol-
lowing items:

PCI-8158: advanced 8-axis Servo / Stepper Motion Control
Card
ADLINK All-in-one Compact Disc

The terminal board is an optional accessory. This would not be
included in PCI-8158 package.

If any of these items are missing or damaged, contact the dealer
from whom you purchased the product. Save the shipping materi-
als and carton to ship or store the product in the future.

10 Installation

2.2 PCI-8158 Outline Drawing

Figure 2-1: PCB Layout of the PCI-8158

P1 / P2: Input / Output Signal Connector (100-pin)
K1 / K2: Simultaneous Start / Stop Connector
P3: Manual Pulsar
S1: DIP switch for card index selection (0-15)
J1-J16: Pulse output selection jumper (Line Driver / Open
Collector)

2.3 PCI-8158 Hardware Installation

2.3.1 Hardware configuration
The PCI-8158 is fully Plug and Play compliant. Hence memory
allocation (I/O port locations) and IRQ channel of the PCI card are
assigned by the system BIOS. The address assignment is done
on a board-by-board basis for all PCI cards in the system.

Installation 11

2.3.2 PCI slot selection
Your computer system may have both PCI and ISA slots. Do not
force the PCI card into a PC/AT slot. The PCI-8158 can be used in
any PCI slot.

2.3.3 Installation Procedures
1. Read through this manual and setup the jumper accord-

ing to your application

2. Turn off your computer. Turn off all accessories (printer,
modem, monitor, etc.) connected to computer. Remove
the cover from your computer.

3. Select a 32-bit PCI expansion slot. PCI slots are shorter
than ISA or EISA slots and are usually white or ivory.

4. Before handling the PCI-8158, discharge any static
buildup on your body by touching the metal case of the
computer. Hold the edge of the card and do not touch
the components.

5. Position the board into the PCI slot you have selected.

6. Secure the card in place at the rear panel of the system
unit using screws removed from the slot.

2.3.4 Troubleshooting
If your system doesn’t boot or if you experience erratic operation
with your PCI board in place, it’s most likely caused by an interrupt
conflict (possibly an incorrect ISA setup). In general, the solution,
once determined it is not a simple oversight, is to consult the BIOS
documentation that comes with your system.

Check the control panel of the Windows system if the card is listed
by the system. If not, check the PCI settings in the BIOS or use
another PCI slot.

12 Installation

2.4 Software Driver Installation
1. Auto run the ADLINK All-In-One CD. Choose Driver

Installation -> Motion Control -> PCI-8158

2. Follow the procedures of the installer.

3. After setup installation is completed, restart windows.

Note: Please download the latest software from the ADLINK web-
site if necessary.

Installation 13

2.5 P1/P2 Pin Assignments: Main Connector
P1 / P2 are the main connectors for the motion control I/O signals.

No. Name I/O Function No. Name I/O Function

1 VDD O +5V power supply output 51 VDD O +5V power supply output

2 EXGND - Ext. power ground 52 EXGND - Ext. power ground

3 OUT0+ O Pulse signal (+) 53 OUT2+ O Pulse signal (+)

4 OUT0- O Pulse signal (-) 54 OUT2- O Pulse signal (-)

5 DIR0+ O Dir. signal (+) 55 DIR2+ O Dir. signal (+)

6 DIR0- O Dir. signal (-) 56 DIR2- O Dir. signal (-)

7 SVON0 O Servo On/Off 57 SVON2 O Servo On/Off

8 ERC0 O Dev. ctr, clr. Signal 58 ERC2 O Dev. ctr, clr. signal

9 ALM0 I Alarm signal 59 ALM2 I Alarm signal

10 INP0 I In-position signal 60 INP2 I In-position signal

11 RDY0 I Multi-purpose Input signal 61 RDY2 I Multi-purpose Input signal

12 EXGND Ext. power ground 62 EXGND Ext. power ground

13 EA0+ I Encoder A-phase (+) 63 EA2+ I Encoder A-phase (+)

14 EA0- I Encoder A-phase (-) 64 EA2- I Encoder A-phase (-)

15 EB0+ I Encoder B-phase (+) 65 EB2+ I Encoder B-phase (+)

16 EB0- I Encoder B-phase (-) 66 EB2- I Encoder B-phase (-)

17 EZ0+ I Encoder Z-phase (+) 67 EZ2+ I Encoder Z-phase (+)

18 EZ0- I Encoder Z-phase (-) 68 EZ2- I Encoder Z-phase (-)

19 VDD O +5V power supply output 69 VDD O +5V power supply output

20 EXGND - Ext. power ground 70 EXGND - Ext. power ground

21 OUT1+ O Pulse signal (+) 71 OUT3+ O Pulse signal (+)

22 OUT1- O Pulse signal (-) 72 OUT3- O Pulse signal (-)

23 DIR1+ O Dir. signal (+) 73 DIR3+ O Dir. signal (+)

24 DIR1- O Dir. signal (-) 74 DIR3- O Dir. signal (-)

25 SVON1 O Servo On/Off 75 SVON3 O Servo On/Off

26 ERC1 O Dev. ctr, clr. Signal 76 ERC3 O Dev. ctr, clr. signal

27 ALM1 I Alarm signal 77 ALM3 I Alarm signal

28 INP1 I In-position signal 78 INP3 I In-position signal

29 RDY1 I Multi-purpose Input signal 79 RDY3 I Multi-purpose Input signal

30 EXGND Ext. power ground 80 EXGND Ext. power ground

31 EA1+ I Encoder A-phase (+) 81 EA3+ I Encoder A-phase (+)

32 EA1- I Encoder A-phase (-) 82 EA3- I Encoder A-phase (-)

33 EB1+ I Encoder B-phase (+) 83 EB3+ I Encoder B-phase (+)

34 EB1- I Encoder B-phase (-) 84 EB3- I Encoder B-phase (-)

Table 2-1: P1/P2 Pin Assignments

14 Installation

P1 is for Axis 0 to 3 control and P2 is for Axis 4 to 7 control.

2.6 K1/K2 Pin Assignments: Simultaneous Start/
Stop
K1 and K2 are for simultaneous start/stop signals for multiple axes
or multiple cards.

Note: +5V and GND pins are provided by the PCI Bus power.

35 EZ1+ I Encoder Z-phase (+) 85 EZ3+ I Encoder Z-phase (+)

36 EZ1- I Encoder Z-phase (-) 86 EZ3- I Encoder Z-phase (-)

37 PEL0 I End limit signal (+) 87 PEL2 I End limit signal (+)

38 MEL0 I End limit signal (-) 88 MEL2 I End limit signal (-)

39 GDI0 I DI/LTC/PCS/SD/CLR0 89 GDI2 I DI/LTC/PCS/SD/CLR2

40 DO0 O General Output 0 90 DO2 O General Output 2

41 ORG0 I Origin signal 91 ORG2 I Origin signal

42 EXGND Ext. power ground 92 EXGND Ext. power ground

43 PEL1 I End limit signal (+) 93 PEL3 I End limit signal (+)

44 MEL1 I End limit signal (-) 94 MEL3 I End limit signal (-)

45 GDI1 I DI/LTC/PCS/SD/CLR1/EMG 95 GDI3 I DI/LTC/PCS/SD/CLR3

46 DO1 O General Output 1 96 DO3 O General Output 3

47 ORG1 I Origin signal 97 ORG3 I Origin signal

48 EXGND - Ext. power ground 98 EXGND - Ext. power ground

49 EXGND - Ext. power ground 99 E_24V - Isolation power Input, +24V

50 EXGND - Ext. power ground 100 E_24V - Isolation power Input, +24V

No. Name Function

1 +5V PCI Bus power Output (VCC)
2 STA Simultaneous start signal input/output
3 STP Simultaneous stop signal input/output
4 GND PCI Bus power ground

Table 2-2: K1/K2 Pin Assignments

No. Name I/O Function No. Name I/O Function

Table 2-1: P1/P2 Pin Assignments

Installation 15

2.7 J1 to J16 Jumper Settings for Pulse Output
J1-J16 are used to set the type of pulse output signals (DIR and
OUT). The output signal type can either be differential line driver
or open collector output. Refer to Section 3.1 for detail jumper set-
tings. The default setting is differential line driver mode. The map-
ping table is as follows:

Table 2-3: J1 to J16 Jumper Settings

JP1 & JP2 Axis 0 JP9 & JP10 Axis 4
JP3 & JP4 Axis 1 JP11 & JP12 Axis 5
JP5 & JP6 Axis 2 JP13 & JP14 Axis 6
JP7 & JP8 Axis 3 JP15 & JP16 Axis 7

16 Installation

2.8 S1 Switch Settings for Card Index
The S1 switch is used to set the card index. For example, if you
turn 1 to ON and others are OFF. It means the card index as 1.
The value is from 0 to 15. Refer to the following table for details.

Card ID Switch Setting (ON=1)

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Table 2-4: S1 Switch Settings

Installation 17

2.9 P3 Manual Pulse
The signals on P3 are for manual pulse input.

Note: The +5V and GND pins are directly given by the PCI-bus
power. Therefore, these signals are not isolated.

No. Name Function (Axis)

1 VDD Isolated Power +5V
2 PA+ Pulse A+ phase signal input
3 PA- Pulse A- phase signal input
4 PB+ Pulse B+ phase signal input
5 PB- Pulse B- phase signal input
6 EXGND External Ground
7 N/A Not Available
8 N/A Not Available
9 N/A Not Available

Table 2-5: P3 Manual Pulse

18 Installation

Signal Connections 19

3 Signal Connections
Signal connections of all I/O’s are described in this chapter. Refer
to the contents of this chapter before wiring any cable between the
PCI-8158 and any motor driver.

This chapter contains the following sections:

Section 3.1 Pulse Output Signals OUT and DIR
Section 3.2 Encoder Feedback Signals EA, EB and EZ
Section 3.3 Origin Signal ORG
Section 3.4 End-Limit Signals PEL and MEL
Section 3.5 In-position signals INP
Section 3.6 Alarm signal ALM
Section 3.7 Deviation counter clear signal ERC
Section 3.8 general-purposed signals SVON
Section 3.9 General-purposed signal RDY
Section 3.10 Multifunction output pin: DO/CMP
Section 3.11 Multifunction input signal DI/LTC/SD/PCS/CLR/EMG
Section 3.12 Pulse input signals PA and PB
Section 3.13 Simultaneous start/stop signals STA and STP
Section 3.14 Termination Board

20 Signal Connections

3.1 Pulse Output Signals OUT and DIR
There are 8 axis pulse output signals on the PCI-8158. For each
axis, two pairs of OUT and DIR differential signals are used to
transmit the pulse train and indicate the direction. The OUT and
DIR signals can also be programmed as CW and CCW signal
pairs. Refer to Section 4.1.1 for details of the logical characteris-
tics of the OUT and DIR signals. In this section, the electrical char-
acteristics of the OUT and DIR signals are detailed. Each signal
consists of a pair of differential signals. For example, OUT0 con-
sists of OUT0+ and OUT0- signals. The following table shows all
pulse output signals on P1.

Table 3-1: Pulse Output Signals OUT (P1)

P1 Pin No. Signal Name Description Axis #

3 OUT0+ Pulse signals (+) 0
4 OUT0- Pulse signals (-) 0
5 DIR0+ Direction signal (+) 0
6 DIR0- Direction signal (-) 0

21 OUT1+ Pulse signals (+) 1
22 OUT1- Pulse signals (-) 1
23 DIR1+ Direction signal (+) 1
24 DIR1- Direction signal (-) 1
53 OUT2+ Pulse signals (+) 2
54 OUT2- Pulse signals (-) 2
55 DIR2+ Direction signal (+) 2
56 DIR2- Direction signal (-) 2
71 OUT3+ Pulse signals (+) 3
72 OUT3- Pulse signals (-) 3
73 DIR3+ Direction signal (+) 3
74 DIR3- Direction signal (-) 3

Signal Connections 21

Table 3-2: Pulse Output Signals OUT (P2)

The output of the OUT or DIR signals can be configured by jump-
ers as either differential line drivers or open collector output. Users
can select the output mode either by jumper wiring between 1 and
2 or 2 and 3 of jumpers J1-J16 as follows:

P2 Pin No. Signal Name Description Axis #

3 OUT4+ Pulse signals (+) 4
4 OUT4- Pulse signals (-) 4
5 DIR4+ Direction signal (+) 4
6 DIR4- Direction signal (-) 4

21 OUT5+ Pulse signals (+) 5
22 OUT5- Pulse signals (-) 5
23 DIR5+ Direction signal (+) 5
24 DIR5- Direction signal (-) 5
53 OUT6+ Pulse signals (+) 6
54 OUT6- Pulse signals (-) 6
55 DIR6+ Direction signal (+) 6
56 DIR6- Direction signal (-) 6
71 OUT7+ Pulse signals (+) 7
72 OUT7- Pulse signals (-) 7
73 DIR7+ Direction signal (+) 7
74 DIR7- Direction signal (-) 7

Output
Signal

For differential line driver output,
close breaks between 1 and 2 of:

For open collector output, close
breaks between 2 and 3 of:

OUT0+ J1 J1
DIR0+ J9 J9
OUT1+ J2 J2
DIR1+ J10 J10
OUT2+ J3 J3
DIR2+ J11 J11
OUT3+ J4 J4

22 Signal Connections

Table 3-3: Output Signal

The default setting of OUT and DIR is set to differential line driver
mode.

The following wiring diagram is for OUT and DIR signals on the 2
axes.

NOTE: If the pulse output is set to open collector output mode, OUT-
and DIR- are used to transmit OUT and DIR signals. The
sink current must not exceed 20mA on the OUT- and
DIR- pins. The default setting is 1-2 shorted.

DIR3+ J12 J12
OUT4+ J5 J5
DIR4+ J13 J13
OUT5+ J6 J6
DIR5+ J14 J14
OUT6+ J7 J7
DIR6+ J15 J15
OUT7+ J8 J8
DIR7+ J16 J16

Output
Signal

For differential line driver output,
close breaks between 1 and 2 of:

For open collector output, close
breaks between 2 and 3 of:

Signal Connections 23

Suggest Usage: Jumper 2-3 shorted and connect OUT-/DIR- to a
470 ohm pulse input interface’s COM of driver. See the following
figure. Choose OUT-/DIR- to connect to driver’s OUT/DIR

Warning: The sink current must not exceed 20mA or the
26LS31 will be damaged!

3.2 Encoder Feedback Signals EA, EB and EZ
The encoder feedback signals include EA, EB, and EZ. Every axis
has six pins for three differential pairs of phase-A (EA), phase-B
(EB), and index (EZ) inputs. EA and EB are used for position
counting, and EZ is used for zero position indexing. Its relative sig-
nal names, pin numbers, and axis numbers are shown in the fol-
lowing tables:

P1 Pin No Signal Name Axis # P1 Pin No Signal Name Axis #

13 EA0+ 0 14 EA0- 0
15 EB0+ 0 16 EB0- 0
31 EA1+ 1 32 EA1- 1
33 EB1+ 1 34 EB1- 1
63 EA2+ 2 64 EA2- 2
65 EB2+ 2 66 EB2- 2
81 EA3+ 3 82 EA3- 3
83 EB3+ 3 84 EB3- 3

24 Signal Connections

The input circuit of the EA, EB, and EZ signals is shown as fol-
lows:

P2 Pin No Signal Name Axis # P2 Pin No Signal Name Axis #

13 EA4+ 4 14 EA4- 4
15 EB4+ 4 16 EB4- 4
31 EA5+ 5 32 EA5- 5
33 EB5+ 5 34 EB5- 5
63 EA6+ 6 64 EA6- 6
65 EB6+ 6 66 EB6- 6
81 EA7+ 7 82 EA7- 7
83 EB7+ 7 84 EB7- 7

P1 Pin No Signal Name Axis # P1 Pin No Signal Name Axis #

17 EZ0+ 0 18 EZ0- 0
35 EZ1+ 1 36 EZ1- 1
67 EZ2+ 2 68 EZ2- 2
85 EZ3+ 3 86 EZ3- 3

P2 Pin No Signal Name Axis # P2 Pin No Signal Name Axis #

17 EZ4+ 4 18 EZ4- 4
35 EZ5+ 5 36 EZ5- 5
67 EZ6+ 6 68 EZ6- 6
85 EZ7+ 7 86 EZ7- 7

Signal Connections 25

Please note that the voltage across each differential pair of
encoder input signals (EA+, EA-), (EB+, EB-), and (EZ+, EZ-)
should be at least 3.5V. Therefore, the output current must be
observed when connecting to the encoder feedback or motor
driver feedback as not to over drive the source. The differential
signal pairs are converted to digital signals EA, EB, and EZ; then
feed to the motion control ASIC.

Below are examples of connecting the input signals with an exter-
nal circuit. The input circuit can be connected to an encoder or
motor driver if it is equipped with: (1) a differential line driver or (2)
an open collector output.

3.2.1 Connection to Line Driver Output
To drive the PCI-8158 encoder input, the driver output must pro-
vide at least 3.5V across the differential pairs with at least 8mA
driving capacity. The grounds of both sides must be tied together.
The maximum frequency is 4Mhz or more depends on wiring dis-
tance and signal conditioning.

3.2.2 Connection to Open Collector Output
To connect with an open collector output, an external power sup-
ply is necessary. Some motor drivers can provide the power
source. The connection between the PCI-8158, encoder, and the
power supply is shown in the diagram below. Note that an external
current limiting resistor R is necessary to protect the PCI-8158
input circuit. The following table lists the suggested resistor values
according to the encoder power supply.

26 Signal Connections

If = 8mA

For more operation information on the encoder feedback signals,
refer to Section 4.4.

Encoder Power (V) External Resistor R

+5V 0Ω(None)

+12V 1.5kΩ
+24V 3.0kΩ

Signal Connections 27

3.3 Origin Signal ORG
The origin signals (ORG0-ORG7) are used as input signals for the
origin of the mechanism. The following table lists signal names,
pin numbers, and axis numbers:

The input circuit of the ORG signals is shown below. Usually, a
limit switch is used to indicate the origin on one axis. The specifi-
cations of the limit switch should have contact capacity of +24V @
6mA minimum. An internal filter circuit is used to filter out any high
frequency spikes, which may cause errors in the operation.

When the motion controller is operated in the home return mode,
the ORG signal is used to inhibit the control output signals (OUT
and DIR). For detailed operations of the ORG signal, refer to Sec-
tion 4.3.3.

P1 Pin No Signal Name Axis #

41 ORG0 0
47 ORG1 1
91 ORG2 2
97 ORG3 3

P2 Pin No Signal Name Axis #

41 ORG4 4
47 ORG5 5
91 ORG6 6
97 ORG7 7

28 Signal Connections

3.4 End-Limit Signals PEL and MEL
There are two end-limit signals PEL and MEL for each axis. PEL
indicates the end limit signal is in the plus direction and MEL indi-
cates the end limit signal is in the minus direction. The signal
names, pin numbers, and axis numbers are shown in the table
below:

A circuit diagram is shown in the diagram below. The external limit
switch should have a contact capacity of +24V @ 8mA minimum.
Either ‘A-type’ (normal open) contact or ‘B-type’ (normal closed)
contact switches can be used. To set the active logic of the exter-
nal limit signal, please refer to the explanation of
_8158_set_limit_logic function.

P1 Pin No Signal Name Axis # P1 Pin No Signal Name Axis #

37 PEL0 0 38 MEL0 0
43 PEL1 1 44 MEL1 1
87 PEL2 2 88 MEL2 2
93 PEL3 3 94 MEL3 3

P2 Pin No Signal Name Axis # P2 Pin No Signal Name Axis #

37 PEL4 4 38 MEL4 4
43 PEL5 5 44 MEL5 5
87 PEL6 6 88 MEL6 6
93 PEL7 7 94 MEL7 7

Signal Connections 29

3.5 In-position Signal INP
The in-position signal INP from a servo motor driver indicates its
deviation error. If there is no deviation error then the servo’s posi-
tion indicates zero. The signal names, pin numbers, and axis
numbers are shown in the table below:

The input circuit of the INP signals is shown in the diagram below:

The in-position signal is usually generated by the servomotor
driver and is ordinarily an open collector output signal. An external
circuit must provide at least 8mA current sink capabilities to drive
the INP signal.

P1 Pin No Signal Name Axis #

10 INP0 0
28 INP1 1
60 INP2 2
78 INP3 3

P2 Pin No Signal Name Axis #

10 INP4 4
28 INP5 5
60 INP6 6
78 INP7 7

30 Signal Connections

3.6 Alarm Signal ALM
The alarm signal ALM is used to indicate the alarm status from the
servo driver. The signal names, pin numbers, and axis numbers
are shown in the table below:

The input alarm circuit is shown below. The ALM signal usually is
generated by the servomotor driver and is ordinarily an open col-
lector output signal. An external circuit must provide at least 8mA
current sink capabilities to drive the ALM signal.

P1 Pin No Signal Name Axis #

9 ALM0 0
27 ALM1 1
59 ALM2 2
77 ALM3 3

P2 Pin No Signal Name Axis #

9 ALM4 4
27 ALM5 5
59 ALM6 6
77 ALM7 7

Signal Connections 31

3.7 Deviation Counter Clear Signal ERC
The deviation counter clear signal (ERC) is active in the following
4 situations:

1. Home return is complete

2. End-limit switch is active

3. An alarm signal stops OUT and DIR signals

4. An emergency stop command is issued by software
(operator)

The signal names, pin numbers, and axis numbers are shown in
the table below:

The ERC signal is used to clear the deviation counter of the servo-
motor driver. The ERC output circuit is an open collector with a
maximum of 35V at 50mA driving capacity.

P1 Pin No Signal Name Axis #

8 ERC0 0
26 ERC1 1
58 ERC2 2
76 ERC3 3

P2 Pin No Signal Name Axis #

8 ERC4 4
26 ERC5 5
58 ERC6 6
76 ERC7 7

32 Signal Connections

3.8 General-purpose Signal SVON
The SVON signal can be used as a servomotor-on control or gen-
eral purpose output signal. The signal names, pin numbers, and
its axis numbers are shown in the following table:

The output circuit for the SVON signal is shown below:

P1 Pin No Signal Name Axis #

7 SVON0 0
25 SVON1 1
57 SVON2 2
75 SVON3 3

P2 Pin No Signal Name Axis #

7 SVON4 4
25 SVON5 5
57 SVON6 6
75 SVON7 7

Signal Connections 33

3.9 General-purpose Signal RDY
The RDY signals can be used as motor driver ready input or gen-
eral purpose input signals. The signal names, pin numbers, and
axis numbers are shown in the following table:

The input circuit of RDY signal is shown in the following diagram:

P1 Pin No Signal Name Axis #

11 RDY0 0
29 RDY1 1
61 RDY2 2
79 RDY3 3

P2 Pin No Signal Name Axis #

11 RDY4 4
29 RDY5 5
61 RDY6 6
79 RDY7 7

34 Signal Connections

3.10 Multi-Functional output pin: DO/CMP
The PCI-8158 provides 8 multi-functional output channels: DO/
CMP0 to DO/CMP7 corresponds to 8 axes. Each of the output
pins can be configured as Digit Output (DO) or as Comparison
Output (CMP) individually. When configured as a Comparison Out-
put pin, the pin will generate a pulse signal when the encoder
counter matches a pre-set value set by the user.

The multi-functional channels are located on P1 and P2. The sig-
nal names, pin numbers, and axis numbers are shown below:

The following wiring diagram is of the CMP on the first 2 axes:

P1 Pin No Signal Name Axis #

40 DO/CMP0 0
46 DO/CMP1 1
90 DO/CMP2 2
96 DO/CMP3 3

P2 Pin No Signal Name Axis #

40 DO/CMP4 4
46 DO/CMP5 5
90 DO/CMP6 6
96 DO/CMP7 7

Signal Connections 35

3.11 Multi-Functional input pin: DI/LTC/SD/PCS/CLR/
EMG
The PCI-8158 provides 8 multi-functional input pins. Each of the 8
pins can be configured as DI(Digit Input) or LTC(Latch) or
SD(Slow down) or PCS(Target position override) or CLR(Counter
clear) or EMG(Emergency). To select the pin function, please refer
to 6.12.

The multi-functional input pins are on P1 and P2. The signal
names, pin numbers, and axis numbers are shown in the following
table:

The multi-functional input pin wiring diagram is as followed:

P1 Pin No Signal Name Axis #

39 DI/LTC/SD/PCS/CLR/EMG_0 0
45 DI/LTC/SD/PCS/CLR/EMG_1 1
89 DI/LTC/SD/PCS/CLR/EMG_2 2
95 DI/LTC/SD/PCS/CLR/EMG_3 3

P2 Pin No Signal Name Axis #

39 DI/LTC/SD/PCS/CLR/EMG_4 4
45 DI/LTC/SD/PCS/CLR/EMG_5 5
89 DI/LTC/SD/PCS/CLR/EMG_6 6
95 DI/LTC/SD/PCS/CLR/EMG_7 7

36 Signal Connections

3.12 Pulse Input Signals PA and PB (PCI-8158)
The PCI-8158 can accept differential pulse input signals through
the pins of PN1 listed below. The pulse behaves like an encoder.
The A-B phase signals generate the positioning information, which
guides the motor.

The pulse signals are used for Axis 0 to Axis 7. User can decide to
enable or disable each axis pulse with
_8158_disable_pulser_input function.

The wiring diagram of the differential pulse input pins are as fol-
lows:

P3 Pin No Signal Name Axis # P3 Pin No Signal Name Axis #

2 PA+ 0-7 3 PA- 0-7
4 PB+ 0-7 5 PB- 0-7

Signal Connections 37

3.13 Simultaneously Start/Stop Signals STA and STP
The PCI-8158 provides STA and STP signals, which enable simul-
taneous start/stop of motions on multiple axes. The STA and STP
signals are on CN4.

The diagram below shows the onboard circuit. The STA and STP
signals of the four axes are tied together respectively.

The STP and STA signals are both input and output signals. To
operate the start and stop action simultaneously, both software
control and external control are needed. With software control, the
signals can be generated from any one of the PCI-8158. Users
can also use an external open collector or switch to drive the STA/
STP signals for simultaneous start/stop.

If there are two or more PCI-8158 cards, connect the K2 connector
on the previous card to K1 connector on the following card. The
K1 and K2 connectors on a same PCI-8158 are connected inter-
nally.

38 Signal Connections

You can also use external start and stop signals to issue a cross-
card simultaneous motor operation. Just connect external start
and stop signals to STA and STP pins on the K1 connector of the
first PCI-8158 card.

Signal Connections 39

40 Signal Connections

Operation Theory 41

4 Operation Theory
This chapter describes the detail operation of the motion controller
card. Contents of the following sections are as follows:

Section 4.1: Classifications of Motion Controller
Section 4.2: Motion Control Modes
Section 4.3: Motor Driver Interface
Section 4.4: Mechanical switch Interface
Section 4.5: The Counters
Section 4.6: The Comparators
Section 4.7: Other Motion Functions
Section 4.8: Interrupt Control
Section 4.9: Multiple Cards Operation

4.1 Classifications of Motion Controller
When servo/stepper drivers were first introduced, motor control
was separated into two layers: motor control and motion control.
Motor control relates to PWM, power stage, closed loop, hall sen-
sors, vector space, etc. Motion control refers to speed profile gen-
erating, trajectory following, multi-axes synchronization, and
coordinating.

4.1.1 Voltage type motion control Interface
The interfaces between motion and motor control are changing
rapidly. From the early years, voltage signals were used as a com-
mand to motor controller. The amplitude of the signal means how
fast a motor rotating and the time duration of the voltage changes
means how fast a motor acceleration from one speed to the other
speed. Voltage signal as a command to motor driver is so called
“analog” type motion controller. It is much easier to integrate into
an analog circuit of motor controller. However, sometimes noise is
a big issue for this type of motion control. Besides, if you want to
do positioning control of a motor, the analog type motion controller
must have a feedback signal of position information and use a
closed loop control algorithm to make it possible. This increased
the complexity of motion control.

42 Operation Theory

4.1.2 Pulse type motion control Interface
The second motion and motor control interface type of is pulses
train. As a trend of digital world, pulse train types represents a new
concept to motion control. The counts of pulses show how many
steps of a motor rotates and the frequency of pulses show how
fast a motor runs. The time duration of frequency changes repre-
sent the acceleration rate of a motor. Because of this interface,
users can control a servo or stepper motor more easier than ana-
log type for positioning applications. It means that motion and
motor control can be separated more easily by this way.

Both of these two interfaces need to take care of gains tuning. For
analog position controllers, the control loops are built inside and
users must tune the gain from the controller. For pulses type posi-
tion controller, the control loops are built outside on the motor driv-
ers and users must tune the gains on drivers.

For the operation of more than one axes, motion control seems
more important than motor control. In industrial applications, reli-
able is a very important factor. Motor driver vendors make good
performing products and a motion controller vendors make power-
ful and variety motion software. Integrated two products make our
machine go into perfect.

4.1.3 Network type motion control Interface
Network motion controllers were recently introduced. The com-
mand between motor driver and motion controller is not analog or
pulses signal anymore; it is a network packet which contents posi-
tion information and motor information. This type of controller is
more reliable because it is digitized and packetized. Because a
motion controller must be real-time, the network must have real-
time capacity around a cycle time below 1 ms. Mitsubishi’s SSC-
NET network is one type of network that can meet such speed
requirements.

4.1.4 Software real-time motion control kernel
There are three methods used for motion control kernels: DSP-
based, ASIC based, and software real-time based.

Operation Theory 43

A motion control system needs an absolutely real-time control
cycle and the calculation on controller must provide a control data
at the same cycle. If not, the motor will not run smoothly. This is
typically accomplished by using the PC’s computing power and by
a simple a feedback counter card and a voltage output or pulse
output card. This method is very low-end but requires extensive
software development. To ensure real-time performance, real-time
software will be used on the system. This increases the complexity
of the system, but this method is the most flexible way for a profes-
sional motion control designers. Most of these methods are on NC
machines.

4.1.5 DSP based motion control kernel
A DSP-based motion controller kernel solves real-time software
problems on computer. A DSP is a micro-processor and all motion
control calculations can be done on it. There is no real-time soft-
ware problem because DSP has its own OS to arrange all the pro-
cedures. There is no interruption from other inputs or context
switching problem like Windows based computer. Although it has
such a perfect performance on real-time requirements, its calcula-
tion speed is not as fast as PC’s CPU at this age. The software
interfacing between DSP based controller’s vendors and users are
not easy to use. Some controller vendors provide some kind of
assembly languages for users to learn and some controller ven-
dors provide only a handshake documents for users to use. Both
ways are not easy to use. Naturally, DSP based controller provide
a better way than software kernel for machine makers to build
applications.

4.1.6 ASIC based motion control kernel
An ASIC-base motion control kernel is quite a bit different than
software and DSP kernels. It has no real-time problem because all
motion functions are done via ASIC. Users or controller vendors
just need to set some parameters which ASIC requires and the
motion control will be done easily. This kind of motion control sep-
arates all system integration problems into 4 parts: motor driver’s
performance, ASIC outputting profile, vendor’s software parame-
ters to ASIC, and users’ command to vendors’ software. It makes
motion controller co-operated more smoothly between devices.

44 Operation Theory

4.1.7 Compare Table of all motion control types

* Real-time OS included

** DSP or software real-time OS is needed

4.1.8 PCI-8158’s motion controller type
The PCI-8158 is an ASIC based, pulse type motion controller. This
controller is made into three blocks: motion ASIC, PCI card, soft-
ware motion library. Users can access motion ASIC via our soft-
ware motion library under Windows 2000/XP, Linux, and RTX
driver. Our software motion library provides one-stop-function for
controlling motors. All the speed parameters’ calculations are
done via our library.

For example, if you want to perform an one-axis point to point
motion with a trapezoidal speed profile, just fill the target position,
speed, and acceleration time in one function. Then the motor will
run as the profile. It takes no CPU resources because generation
of every control cycle pulse is done by the ASIC. The precision of
target position depends on the closed loop control performance
and mechanical parts of the motor driver, not on motion controller
command because the motion controller is only responsible for
sending correct pulses counts via a desired speed profile. So it is
much easier for programmers, mechanical or electrical engineers
to find out problems and debug.

Software ASIC DSP
Price *Fair Cheap Expensive
Functionality Highest Low Normal
Maintenance Hard Easy Fair

Analog Pulses Network
Price High Low **Normal
Signal Quality
(refer to distance) Fair Good Best

Maintenance Hard Fair Easy

Operation Theory 45

4.2 Motion Control Modes
Motor control is not only for positive or negative moving, motion
control can make the motors run according to a specific speed
profile, path trajectory and synchronous condition with other axes.
The following sections describe the motion control modes of this
motion controller could be performed.

4.2.1 Coordinate system
The Cartesian coordinate system and pulses for the unit of length
are used . The physical length depends on mechanical parts and
motor’s resolution. For example, if the motor is installed on a
screw ball. The pitch of screw ball is 10mm and the pulses needed
for a round of motor are 10,000 pulses. We can say the physical
unit of one pulse is equal to 10mm/10,000p =1 micro-meter.

Simply set a command with 15,000 pulses for motion controller to
move 15mm. How about if we want to move 15.0001mm? The
motion controller will keep the residual value less than 1 pulse and
add it to next command.

The motion controller sends incremental pulses to motor drivers. It
means that we can only send relative command to motor driver.
But we can solve this problem by calculating the difference
between current position and target position first. Then send the
differences to motor driver. For example, if current position is
1000. We want to move a motor to 9000. User can use an abso-
lute command to set a target position of 9000. Inside the motion
controller, it will get current position 1000 first then calculate the
difference from target position. It gets a result of +8000. So, the
motion controller will send 8000 pulses to motor driver to move the
position of 9000.

Sometimes, you may need to install a linear scale or external
encoder to check machine’s position. But how do you to build this
coordinate system? If the resolution of external encoder is 10,000

46 Operation Theory

pulses per 1mm and the motor will move 1mm if the motion con-
troller send 1,000 pulses, It means that when we want to move 1
mm, we need to send 1,000 pulses to motor driver then we will get
the encoder feedback value of 10,000 pulses. If we want to use an
absolute command to move a motor to 10,000 pulses position and
current position read from encoder is 3500 pulses, how many
pulses will it send to motor driver? The answer is (10000 – 3500) /
(10,000 / 1,000)=650 pulses. The motion controller will calculate it
automatically if you have already set the “move ratio”. The “move
ratio” equals the feedback resolution/command resolution.

4.2.2 Absolute and relative position move
There are two kinds of commands to locate target positions in the
coordinate system: absolute and relative. Absolute command
means that for a given motion controller a position, the motion
controller will move a motor to that position from current position.
Relative command means that to move a motion controller dis-
tance, the motion controller will move motor by the distance from
current position. During the movement, you can specify the speed
profile, meaning you can define how fast and at what speed to
reach the position.

Operation Theory 47

4.2.3 Trapezoidal speed profile
A trapezoidal speed profile means the acceleration/deceleration
area follows a first-order linear velocity profile (constant accelera-
tion rate). The profile chart is shown as follows:

The area of the velocity profile represents the distance of this
motion. Sometimes, the profile looks like a triangle because the
desired distance is smaller than the area of given speed parame-
ters. When this situation happens, the motion controller will lower
the maximum velocity but keep the acceleration rate to meet the
distance requirement. The chart of this situation is shown as
below:

This kind of speed profile could be applied on velocity mode, posi-
tion mode in one axis or multi-axes linear interpolation and two
axes circular interpolation modes.

4.2.4 S-curve and Bell-curve speed profile
S-curve means the speed profile in accelerate/decelerate area fol-
lows a second-order curve. It can reduce vibration at the begin-
ning of motor start and stop. In order to speed up the acceleration/
deceleration during motion, we need to insert a linear part into

48 Operation Theory

these areas. We call this shape as “bell” curve. It adds a linear
curve between the upper side of s-curve and lower side of s-curve.
This shape improves the speed of acceleration and also reduces
the vibration of acceleration.

For a bell curve, we define its shape’s parameter as below:

Tacc: Acceleration time in second
Tdec: Deceleration time in second
StrVel: Starting velocity in PPS
MaxVel: Maximum velocity in PPS
VSacc: S-curve part of a bell curve in deceleration in PPS
VSdec: S-curve part of a bell curve in deceleration in PPS

If VSacc or VSdec=0, the acceleration or deceleration is a pure S-
curve without any linear components. The acceleration chart of
bell curve is shown below:

Operation Theory 49

The S-curve profile motion functions are designed to always pro-
duce smooth motion. If the time for acceleration parameters com-
bined with the final position don’t allow an axis to reach the
maximum velocity (i.e. the moving distance is too small to reach
MaxVel), then the maximum velocity is automatically lowered (see
the following Figure).

The rule is to lower the value of MaxVel and the Tacc, Tdec,
VSacc, VSdec automatically, and keep StrVel, acceleration, and
jerk unchanged. This is also applicable to Trapezoidal profile
motion.

This kind of speed profile could be applied on velocity mode, posi-
tion mode in one axis or multi-axes linear interpolation and two
axes circular interpolation modes.

4.2.5 Velocity mode
Velocity mode means the pulse command is continuously output-
ting until a stop command is issued. The motor will run without a
target position or desired distance unless it is stopped by other
reason. The output pulse accelerates from a starting velocity to a
specified maximum velocity. It can be followed by a linear or S-
curve acceleration shape. The pulse output rate is kept at maxi-
mum velocity until another velocity command is set or a stop com-
mand is issued. The velocity can be overridden by a new speed
setting. Notice that the new speed could not be a reversed speed
of original running speed. The speed profile of this kind of motion
is shown below:

50 Operation Theory

4.2.6 One axis position mode
Position mode means the motion controller will output a specific
amount of pulses which is equal to the desired position or dis-
tance. The unit of distance or position is pulse internally on the
motion controller. The minimum length of distance is one pulse.
With the PCI-8158, we provide a floating point function for users to
transform a physical length to pulses. Inside our software library,
we will keep those distance less than one pulse in register and
apply them to the next motion function. Besides positioning via
pulse counts, our motion controller provides three types of speed
profile to accomplish positioning: first-order trapezoidal, second-
order S-curve, and mixed bell curve. Users can call respective
functions to perform that. The following diagram shows the rela-
tionship between distance and speed profiles.

The distance is the area of the V-t diagram of this profile.

Operation Theory 51

4.2.7 Two axes linear interpolation position mode
“Interpolation between multi-axes” means these axes start simul-
taneously, and reach their ending points at the same time. Linear
means the ratio of speed of every axis is a constant value.
Assume that we run a motion from (0,0) to (10,4). The linear inter-
polation results are shown as below.

The pulses output from X or Y axis remains 1/2 pulse difference
according to a perfect linear line. The precision of linear interpola-
tion is shown as below:

To stop an interpolation group, just call a stop function on first axis
of the group.

As in the diagram below, 8-axis linear interpolation means to move
the XY position from P0 to P1. The 2 axes start and stop simulta-
neously, and the path is a straight line.

52 Operation Theory

The speed ratio along X-axis and Y-axis is (∆X: ∆Y), respectively,
and the vector speed is:

When calling 8-axis linear interpolation functions, the vector speed
needs to define the start velocity, StrVel, and maximum velocity,
MaxVel.

4.2.8 Two axes circular interpolation mode
Circular interpolation means XY axes simultaneously starts from
initial point, (0,0) and stop at end point,(1800,600). The path
between them is an arc, and the MaxVel is the tangential speed.
Notice that if the end point of arc is not at a proper position, it will
move circularly without stopping.

The motion controller will move to the final point user desired even
this point is not on the path of arc. But if the final point is not at the
location of the shadow area of the following graph, it will run circu-
larly without stopping.

Operation Theory 53

The command precision of circular interpolation is shown below.
The precision range is at radius ±1/2 pulse.

4.2.9 Continuous motion
Continuous motion means a series of motion command or position
can be run continuously. You can set a new command right after
previous one without interrupting it. The motion controller can
make it possible because there are three command buffers (pre-
registers) inside.

When the first command is executing, you can set second com-
mand into first buffer and third command into second buffer. Once
the first command is finished, the motion controller will push the
second command to the executing register and the third command
to first buffer. Now, the second buffer is empty and user can set

54 Operation Theory

the fourth command into second buffer. Normally, if users have
enough time to set a new command into second buffer before exe-
cuting register is finished, the motion can run endlessly. The fol-
lowing diagram shows this architecture of continuous motion.

In addition to a position command, the speed command should be
set correctly to perform a speed continuous profile. For the follow-
ing example, there are three motion command of this continuous
motion. The second one has high speed than the others. The
interconnection of speed between these three motion functions
should be set as the following diagram:

Operation Theory 55

If the speed value of the second command is less than the others,
the settings would be like the following diagram:

For 8-axis continuous arc interpolation, it is the same concept. You
can set the speed matched between the speed settings of two
commands.

If the INP checking is enabled, the motion will have some delayed
between each command in buffers. INP check enabled makes the
desired point be reached but reduces the smoothing between
each command. Turn INP checking off, if you don’t need this delay
and need smooth motion.

4.2.10 Home Return Mode
Home return means to search for a zero position point on the coor-
dinate. Sometimes, you use a ORG, EZ or EL pin as a zero posi-
tion on the coordinate. During system power-on, the program

56 Operation Theory

needs to find a zero point of this machine. Our motion controller
provides a home return mode to make it.

We have many home modes and each mode contents many con-
trol phases. All of these phases are done by the ASIC. No soft-
ware is needed or CPU loading will be taken. After home return is
completed, the target counter will be reset to zero at the desired
condition of home mode, such as a raising edge when ORG input.
Sometimes, the motion controller will still output pulses to make
machine show down after resetting the counter. When the motor
stops, the counter may not be at zero point but the home return
procedure is finished. The counter value you see is a reference
position from machine’s zero point already.

The following figures show the various home modes: R means
counter reset (command and position counter) and E means ERC
signal output.

Operation Theory 57

58 Operation Theory

Operation Theory 59

60 Operation Theory

Operation Theory 61

62 Operation Theory

Operation Theory 63

4.2.11 Home Search Function
This mode is used to add auto searching function on normal home
return mode described in previous section no matter which posi-
tion the axis is. The following diagram shows an example for home
mode 2 via home search function. The ORG offset can’t be zero.
The suggested value is the double length of ORG area.

64 Operation Theory

4.2.12 Manual Pulse Function
The manual pulse is a device to generate pulse trains by hand.
The pulses are sent to motion controller and re-directed to pulse
output pins. The input pulses could be multiplied or divided before
sending out.

The motion controller receives two kinds of pulse trains from man-
ual pulse device: CW/CCW and AB phase. If the AB phase input
mode is selected, the multiplier has additional selection of 1, 2, or
4.

The following figure shows pulse ratio block diagram.

4.2.13 Simultaneous Start Function
Simultaneous motion means more than one axis can be started by
a simultaneous signal which can be external or internal signals.
For external signal, users must set move parameters first for all
axes then these axes will wait an extern start/stop command to
start or stop. For internal signals, the start command could be from
a software start function. Once it is issued, all axes which are in
waiting synchronous mode will start at the same time.

Operation Theory 65

4.2.14 Speed Override Function
Speed override means that you can change speed of the com-
mand during the operation of motion. The change parameter is a
percentage of original defined speed. You can define a 100%
speed value then change the speed by percentage of original
speed when motion is running. If users didn’t define the 100%
speed value. The default 100% speed is the latest motion com-
mand’s maximum speed. This function can be applied on any
motion function. If the running motion is S-curve or bell curve, the
speed override will be a pure s-curve. If the running motion is t-
curve, the speed override will be a t-curve.

4.2.15 Position Override Function
Position override means that when you issue a positioning com-
mand and want to change its target position during this operation.
If the new target position is behind current position when override
command is issued, the motor will slow down then reverse to new
target position. If the new target position is far away from current
position on the same direction, the motion will remain its speed
and run to new target position. If the override timing is on the
deceleration of current motion and the target position is far away
from current position on the same direction, it will accelerate to
original speed and run to new target position. The operation exam-
ples are shown as below. Notice that if the new target position’s

66 Operation Theory

relative pulses are smaller than original slow down pulses, this
function can’t work properly.

4.3 The motor driver interface
We provide several dedicated I/Os which can be connected to
motor driver directly and have their own functions. Motor drivers
have many kinds of I/O pins for external motion controller to use.
We classify them to two groups: pulse I/O signals including pulse
command and encoder interface, and digital I/O signals including
servo ON, alarm, INP, servo ready, alarm reset and emergency
stop inputs. The following sections will describe the functions
these I/O pins.

4.3.1 Pulse Command Output Interface
The motion controller uses pulse command to control servo/step-
per motors via motor drivers. Set the drivers to position mode
which can accept pulse trains as position command. The pulse
command consists of two signal pairs. It is defined as OUT and
DIR pins on connector. Each signal has two pins as a pair for dif-
ferential output. There are two signal modes for pulse output com-
mand: (1) single pulse output mode (OUT/DIR), and (2) dual pulse
output mode (CW/CCW type pulse output). The mode must be the
same as motor driver. The modes vs. signal type of OUT and DIR
pins are listed in the table below:

Operation Theory 67

Single Pulse Output Mode (OUT/DIR Mode)

In this mode, the OUT pin is for outputting command pulse chain.
The numbers of OUT pulse represent distance in pulse. The fre-
quency of the OUT pulse represents speed in pulse per second.
The DIR signal represents command direction of positive (+) or
negative (-). The diagrams below show the output waveform. It is
possible to set the polarity of the pulse chain.

Dual Pulse Output Mode (CW/CCW Mode)
In this mode, the waveform of the OUT and DIR pins represent
CW (clockwise) and CCW (counter clockwise) pulse output

Mode Output of OUT pin Output of DIR pin
Dual pulse output

(CW/CCW)
Pulse signal in plus (or CW)

direction
Pulse signal in minus

(or CCW) direction
Single pulse out-

put (OUT/DIR) Pulse signal Direction signal (level)

68 Operation Theory

respectively. The numbers of pulse represent distance in pulse.
The frequency of the pulse represents speed in pulse per second.
Pulses output from the CW pin makes the motor move in positive
direction, whereas pulse output from the CCW pin makes the
motor move in negative direction. The following diagram shows
the output waveform of positive (+) commands and negative (-)
commands.

The command pulses are counted by a 28-bit command counter.
The command counter can store a value of total pulses outputting
from controller.

4.3.2 Pulse feedback input interface
Our motion controller provides one 28-bit up/down counter of each
axis for pulse feedback counting. This counter is called position
counter. The position counter counts pulses from the EA and EB
signal which have plus and minus pins on connector for differential
signal inputs. It accepts two kinds of pulse types: dual pulse input
(CW/CCW mode) and AB phase input. The AB phase input can be
multiplied by 1, 2 or 4. Multiply by 4 AB phase mode is the most
commonly used in incremental encoder inputs.

For example, if a rotary encoder has 2000 pulses per rotation,
then the counter value read from the position counter will be 8000
pulses per rotation when the AB phase is multiplied by four.

Operation Theory 69

If you don’t use encoder for motion controller, the feedback source
for this counter must be set as pulse command output or the
counter value will always be zero. If it is set as pulse command
output, users can get the position counter value from pulse com-
mand output counter because the feedback pulses are internal
counted from command output pulses.

The following diagrams show these two types of pulse feedback
signal.

The pattern of pulses in this mode is the same as the Dual Pulse
Output Mode in the Pulse Command Output section except that
the input pins are EA and EB.

In this mode, pulses from EA pin cause the counter to count up,
whereas EB pin caused the counter to count down.

90° phase difference signals Input Mode (AB phase Mode)
In this mode, the EA signal is a 90° phase leading or lagging in
comparison with the EB signal. “Lead” or “lag” of phase differ-
ence between two signals is caused by the turning direction of
the motor. The up/down counter counts up when the phase of
EA signal leads the phase of EB signal.

70 Operation Theory

The following diagram shows the waveform.

The index input (EZ) signal is as the zero reference in linear or
rotary encoder. The EZ can be used to define the mechanical zero
position of the mechanism. The logic of signal must also be set
correctly to get correct result.

4.3.3 In position signal
The in-position signal is an output signal from motor driver. It tells
motion controllers a motor has been reached a position within a
predefined error. The predefined error value is in-position value.
Most motor drivers call it as INP value. After motion controller
issues a positioning command, the motion busy status will keep
true until the INP signal is ON. You can disable INP check for
motion busy flag. If it is disabled, the motion busy will be FALSE
when the pulses command is all sent.

Operation Theory 71

4.3.4 Servo alarm signal
The alarm signal is an output signal from motor driver. It tells
motion controller that there has something error inside servo
motor or driver. Once the motion controller receives this signal, the
pulses command will stop sending and the status of ALM signal
will be ON. The reasons of alarm could be servo motor’s over
speed, over current, over loaded and so on. Please check motor
driver’s manual about the details.

The logic of alarm signal must be set correctly. If the alarm logic’s
setting is not the same as motor driver’s setting, the ALM status
will be always ON and the pulse command can never be output-
ted.

4.3.5 Error clear signal
The ERC signal is an output from the motion controller. It tells
motor driver to clear the error counter. The error counter is
counted from the difference of command pulses and feedback
pulses. The feedback position will always have a delay from the
command position. It results in pulse differences between these
two positions at any moment. The differences are shown in error
counter. The motor driver uses the error counter as a basic control
index. The large the error counter value is, the faster the motor
speed command will be set. If the error counter is zero, it means
that zero motor speed command will be set.

At following four situations, the ERC signal will be output automat-
ically from the motion controller to the motor driver in order to clear
error counter at the same time.

1. Home return is complete

2. The end-limit switch is touched

3. An alarm signal is active

4. An emergency stop command is issued

4.3.6 Servo ON/OFF switch
The servo on/off switch is a general digital output signal on motion
controller. It is defined as the SVON pin on the connector. It can be
used for switching motor driver’s controlling state. Once it is turned

72 Operation Theory

on, the motor will be held because the control loop of driver is
active. Be careful that when the axis is vertically installed and the
servo signal is turned off, the axis will be in uncontrolled state and
it can fall. Some situations, such as a servo alarm and emergency
signal ON may result in the same state.

4.3.7 Servo Ready Signal
The servo ready signal is a general digital input on motion control-
ler. It has no relative purpose to motion controller. You can connect
this signal to motor driver’s RDY signal to check if the motor driver
is in ready state. It lets you check if, for example, the motor driver’s
power has been input or not. Or, users can connect this pin as a
general input for other purpose and it does not affect motion con-
trol.

4.3.8 Servo alarm reset switch
The servo driver will raise an alarm signal if there is something
wrong inside the servo driver. Some alarm situations include servo
motor over current, over speed, over loading, etc. Power reset can
clear the alarm status but you usually don’t want to power off the
servo motor when operating. There is one pin from servo driver for
users to reset the alarm status. Our motion controller provides one
general output pin for each axis. You can use this pin for resetting
servo alarm status.

4.4 Mechanical switch interface
We provide some dedicated input pins for mechanical switches
like original switch (ORG), plus and minus end-limit switch (±EL),
slow down switch (SD), positioning start switch (PCS), counter
latch switch (LTC), emergency stop input (EMG) and counter
clear switch (CLR). These switches’ response time is very short,
only a few ASIC clock cycles. There is no real-time problem when
using these signals. All functions are done by the motion ASIC.
The software does not need to do anything and only needed to
wait on the results.

Operation Theory 73

4.4.1 Original or home signal
Our controller provides one original or home signal for each axis.
This signal is used for defining the zero position of this axis. The
logic of this signal must be set properly before doing home proce-
dure. Please refer to home mode section for details.

4.4.2 End-Limit switch signal
The end-limit switches are usually installed on both ending sides
of one axis. We must install plus EL at the positive position of the
axis and minus EL at the negative position of the axis. These two
signals are for safety reason. If they are installed reversely, the
protection will be invalid. Once the motor’s moving part touches
one of the end-limit signal, the motion controller will stop sending
pulses and output an ERC signal. It can prevent machine crash
when a miss operation is missed.

4.4.3 Slow down switch
The slow down signals are used to force the command pulse to
decelerate to the starting velocity when it is active. This signal is
used to protect a mechanical moving part under high speed move-
ment toward the mechanism’s limit. The SD signal is effective for
both plus and minus directions.

4.4.4 Positioning Start switch
The positioning start switch is used to move a specific position
when it is turned on. The function is shown as below.

74 Operation Theory

4.4.5 Counter Clear switch
The counter clear switch is an input signal which makes the
counters of motion controller to reset. If you need to reset a
counter according to external command, use this pin as controlling
source.

4.4.6 Counter Latch switch
The counter latch switch is an input signal which makes counter
value to be kept into a register when this input active. If you need
to know counter value at the active moment of one input, they can
connect this pin to catch that.

4.4.7 Emergency stop input
Our motion controller provides a global digital input for emergency
situation. Once the input is turned on, our motion controller will
stop all motion of the axes immediately to prevent machine’s dam-
age. Usually, you can connect an emergency stop button to this
input on their machine. We suggest this input as normal closed
type for safety.

4.5 The Counters
There are four counters for each axis of this motion controller.
They are described in this section.

Command position counter: counts the number of output
pulses
Feedback position counter: counts the number of input
pulses
Position error counter: counts the error between command
and feedback pulse numbers.
General purpose counter: The source can be configured as
the command position, feedback position, manual pulse, or
half of the ASIC clock.
Target position recorder: A software-maintained target posi-
tion value of latest motion command.

Operation Theory 75

4.5.1 Command position counter
The command position counter is a 28-bit binary up/down counter.
Its input source is the output pulses from the motion controller. It
provides the information of the current command position. It is
useful for debugging the motion system.

Our motion system is an open loop type. The motor driver receives
pulses from motion controller and drive the motor to move. When
the driver is not moving, it can check this command counter and
see if there is an update value on it. If it is, it means that the pulses
have seen sent and the problem could be on the motor driver. Try
to check motor driver’s pulse receiving counter when this situation
is happened.

The unit of command counter is in pulse. The counter value could
be reset by a counter clear signal or home function completion.
Users can also use a software command counter setting function
to reset it.

4.5.2 Feedback position counter
The feedback position counter is a 28-bit binary up/down counter.
Its input source is the input pulses from the EA/EB pins. It counts
the motor position from motor’s encoder output. This counter
could be set from a source of command position for an option
when no external encoder inputs.

The command output pulses and feedback input pulses will not
always be the same ratio in mini-meters. Users must set the ratio if
these two pulses are not 1:1.

Because our motion controller is not a closed-loop type, the feed-
back position counter is just for reference after motion is moving.
The position closed-loop is done by servo motor driver. If the servo
driver is well tuned and the mechanical parts are well assembled,
the total position error will remain in acceptable range after motion
command is finished.

4.5.3 Command and Feedback error counter
The command and feedback error counter is used to calculate the
error between the command position and the feedback position.

76 Operation Theory

The value is calculated from command subtracting feedback posi-
tion.

If the ratio between command and feedback is not 1:1, the error
counter is meaningless.

This counter is a 16-bit binary up/down counter.

4.5.4 General purpose counter
The source of general purpose counter could be any of the follow-
ing:

1. Command position output – the same as a command
position counter

2. Feedback position input – the same as a feedback posi-
tion counter

3. Manual Pulse input – default setting

4. Clock Ticks – counter from a timer about 9.8MHz

4.5.5 Target position recorder
The target position recorder is used for providing target position
information. It is used in continuous motion because motion con-
troller need to know the previous motion command’s target posi-
tion and current motion command’s target position in order to
calculate relative pulses of current command then send results
into pre-register. Please check if the target position is the same
with current command position before continuous motion. Espe-
cially after the home function and stop function.

Operation Theory 77

4.6 The Comparators
There are 5 counter comparators of each axis. Each comparator
has dedicated functions. They are:

1. Positive soft end-limit comparator to command counter

2. Negative soft end-limit comparator to command counter

3. Command and feedback error counter comparator

4. General comparator for all counters

5. Trigger comparator for all command and feedback
counters

4.6.1 Soft end-limit comparators
There are two comparators for end-limit function of each axis. We
call them for the soft end-limit comparators. One is for plus or pos-
itive end-limit and the other is for minus or negative end-limit. The
end-limit is to prevent machine crash when over traveling. We can
use the soft limit instead of a real end-limit switch. Notice that
these two comparators only compare the command position
counter. Once the command position is over the limited set inside
the positive or negative comparators, it will stop moving as it
touches the end-limit switch.

4.6.2 Command and feedback error counter comparators
This comparator is only for command and feedback counter error.
Users can use this comparator to check if the error is too big. It
can be set a action when this condition is met. The actions include
generating interrupt, immediately stop, and deceleration to stop.

4.6.3 General comparator
The general comparator let users to choose the source to com-
pare. It could be chosen from command, feedback position
counter, error counter or general counter. The compare methods
could be chosen by equal, greater than or less than with direc-
tional or directionless. Also, the action when condition is met can
be chosen from generating interrupt, stop motion or others.

78 Operation Theory

4.6.4 Trigger comparator
The trigger comparator is much like general comparator. It has an
additional function, generating a trigger pulse when condition is
met. Once the condition is met, the CMP pin on the connector will
output a pulse for specific purpose like triggering a camera to
catch picture. Not all of axes have this function. It depends on the
existence of CMP pin of the axis. The following diagram shows the
application of triggering.

In this application, the table is controlled by the motion command,
and the CCD Camera is controlled by CMP pin. When the compar-
ing position is reached, the pulse will be outputted and the image
is captured. This is an on-the-fly image capture. If you want to get
more images during the motion path, try to set a new comparing
point right after previous image is captured. Continuous image
capturing can be accomplished by this method.

4.7 Other Motion Functions
We provide many other functions on the motion controller. Such as
backlash compensation, slip correction, vibration restriction,
speed profile calculation and so on. The following sections will
describe these functions.

Operation Theory 79

4.7.1 Backlash compensation and slip corrections
The motion controller has backlash and slip correction functions.
These functions output the number of command pulses in FA
speed. The backlash compensation is performed each time when
the direction changes on operation. The slip correction function is
performed before a motion command, regardless of the direction.
The correction amount of pulses can be set through the function
library.

4.7.2 Vibration restriction function
The method of vibration restriction of the motion controller is by
adding one pulse of reverse direction and then one pulse of for-
ward direction shortly after completing a motion command. The
timing of these two dummy pulses are shown below: (RT is
reverse time and FT is forward time)

4.7.3 Speed profile calculation function
Our motion function needs several speed parameters from users.
Some parameters are conflict in speed profile. For example, if you
input a very fast speed profile and a very short distance to motion
function, the speed profile is not exist for these parameters. At this
situation, motion library will keep the acceleration and deceleration
rate. It tries to lower the maximum speed from users automatically
to reform a speed profile feasible. The following diagram shows
this concept.

80 Operation Theory

Our motion library has a series of functions to know the actual
speed profile of the command from users.

4.8 Interrupt Control
The motion controller can generate an interrupt signal to the host
PC. It is much useful for event-driven software application. Users
can use this function _8158_int_control() to enable or disable the
interrupt service.

There are three kinds of interrupt sources on PCI-8158. One is
motion interrupt source and the other is error interrupt source and
another is GPIO interrupt sources. Motion and GPIO interrupt
sources can be maskable but error interrupt sources can’t. Motion
interrupt sources can be maskable by
_8158_set_motion_int_factor(). Its mask bits are shown as follow-
ing table:

Operation Theory 81

Motion Interrupt Source Bit Settings

The error interrupt sources are non-maskable but the error num-
ber of situation could be get from _8158_wait_error_interrupt()’s
return code if it is not timeout.

Bit Description

0 Normally Stop
1 Next command in buffer starts
2 Command pre-register 2 is empty and allow new command to write
3 0
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 +Soft limit or comparator 1 is ON
9 -Soft limit or comparator 2 is ON
10 Error comparator or comparator 3 is ON
11 General comparator or comparator 4 is ON
12 Trigger comparator or comparator 5 is ON
13 Counter is reset by CLR input
14 Counter is latched by LTC input
15 Counter is latched by ORG Input
16 SD input turns on
17 0
18 0
19 CSTA input or _8158_start_move_all() turns on

20-31 0

Table 4-1: Motion Interrupt Source Bit Settings

82 Operation Theory

Error Interrupt return codes

The GPIO interrupt sources are maskable. The mask bits table is
shown below:

Value Description

0 +Soft Limit is ON and axis is stopped
1 -Soft Limit is ON and axis is stopped
2 Comparator 3 is ON and axis is stopped
3 General Comparator or comparator 4 is ON and axis is stopped
4 Trigger Comparator or comparator 5 is ON and axis is stopped
5 +End Limit is on and axis is stopped
6 -End Limit is on and axis is stopped
7 ALM is happened and axis is stop
8 CSTP is ON or _8158_stop_move_all is on and axis is stopped
9 CEMG is on and axis is stopped
10 SD input is on and axis is slowed down to stop
11 0
12 Interpolation operation error and stop
13 axis is stopped from other axis’s error stop
14 Pulse input buffer overflow and stop
15 Interpolation counter overflow
16 Encoder input signal error but axis is not stopped
17 Pulse input signal error but axis is not stopped

11-31 0

Table 4-2: Error Interrupt return codes

Operation Theory 83

GPIO Interrupt Source Bit Settings (1=Enable,0=Disable)

The steps for using interrupts:

1. Use _8158_int_control(CARD_ID, Enable=1/Disable=0);

2. Set interrupt sources for Event or GPIO interrupts.

3. _8158_set_motion_int_facor(AXIS0, 0x01); // Axis0 nor-
mally stop

4. _8158_set_gpio_int_factor(CARD0, 0x01); // DI0 falling
edge

5. _8158_wait_motion_interrupt(AXIS0, 0x01, 1000) // Wait
1000ms for normally stop interrupt

6. _8158_wait_gpio_interrupt(CARD0, 0x01, 1000) // Wait
1000ms for DI0 falling edge interrupt

7. I16 ErrNo=_8158_wait_error_interrupt(AXIS0, 2000); //
Wait 2000ms for error interrupts

Bit Description

0 DI0 falling edge
1 DI1 falling edge
2 DI2 falling edge
3 DI3 falling edge
4 DI0 raising edge
5 DI1 raising edge
6 DI2 raising edge
7 DI3 raising edge
8 Pin23 input interrupt
9 Pin57 input interrupt

10 Pin23/57 interrupt mode selection (0=falling, 1=raising)
11-14 0

15 GPIO interrupt switch (Always=1)

Table 4-3: GPIO Interrupt Source Bit Settings

84 Operation Theory

4.9 Multiple Card Operation
The motion controller allows more than one card in one system.
Since the motion controller is plug-and-play compatible, the base
address and IRQ setting of the card are automatically assigned by
the PCI BIOS at the beginning of system booting. You don’t need
and can’t change the resource settings.

When multiple cards are applied to a system, the number of card
must be noted. The card number depends on the card ID switch
setting on the board. The axis number is depends on the card ID.
For example, if three motion controller cards are plugged into PCI
slots, and the corresponding card ID is set, then the axis number
on each card will be:

Notice that if there has the same card ID on multiple cards, the
function will not work correctly.

MotionCreatorPro 85

5 MotionCreatorPro
After installing the hardware (Chapters 2 and 3), it is necessary to
correctly configure all cards and double check the system before
running. This chapter gives guidelines for establishing a control
system and manually testing the 8158 cards to verify correct oper-
ation. The MotionCreatorPro software provides a simple yet pow-
erful means to setup, configure, test, and debug a motion control
system that uses 8158 cards.

Note that MotionCreatorPro is only available for Windows 2000/
XP with a screen resolution higher than 1024x768. Recommended
screen resolution is 1024x768. It cannot be executed under the
DOS environment.

5.1 Execute MotionCreatorPro
After installing the software drivers for the 8158 in Windows 2000/
XP, the MotionCreatorPro program can be located at <chosen
path> \PCI-Motion\MotionCreatorPro. To execute the program,
double click on the executable file or use Start>Program
Files>PCI-Motion>MotionCreatorPro.

86 MotionCreatorPro

5.2 About MotionCreatorPro
Before Running MotionCreatorPro, the following issues should be
kept in mind.

1. MotionCreatorPro is a program written in VB.NET 2003,
and is available only for Windows 2000/XP with a screen
resolution higher than 1024x768. It cannot be run under
DOS.

2. 2.MotionCreatorPro allows users to save settings and
configurations for 8158 cards. Saved configurations will
be automatically loaded the next time MotionCreatorPro
is executed. Two files, 8158.ini and 8158MC.ini, in the
windows root directory are used to save all settings and
configurations.

3. To duplicate configurations from one system to another,
copy 8158.ini and 8158MC.ini into the windows root
directory.

4. If multiple 8158 cards use the same MotionCreatorPro
saved configuration files, the DLL function call
_8158_config_from_file() can be invoked within a user
developed program. This function is available in a DOS
environment as well.

MotionCreatorPro 87

5.3 MotionCreatorPro Form Introducing

5.3.1 Main Menu
The main menu appears after running MotionCreatorPro. It is used
to:

88 MotionCreatorPro

5.3.2 Select Menu
The select menu appears after running MotionCreatorPro. It is
used to:

MotionCreatorPro 89

5.3.3 Card Information Menu
This menu shows Information about this card.

90 MotionCreatorPro

5.3.4 Configuration Menu
In this menu, you can configure ALM, INP, ERC, EL, ORG, and
EZ.

1. ALM Logic and Response mode: Select logic and
response modes of ALM signal. The related function call
is _8158_set_alm().

2. INP Logic and Enable/Disable selection: Select logic,
and Enable/ Disable the INP signal. The related function
call is _8158_set_inp()

3. ERC Logic and Active timing: Select the Logic and
Active timing of the ERC signal. The related function call
is _8158_set_erc().

4. EL Response mode: Select the response mode of the
EL signal. The related function call is
_8158_set_limit_logic ().

MotionCreatorPro 91

5. ORG Logic: Select the logic of the ORG signal. The
related function call is _8158_set_home_config().

6. EZ Logic: Select the logic of the EZ signal. The related
function call is _8158_set_home_config().

7. Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.
Save Config: Save current configuration to 8158.ini and
8158MC.ini.
Close: Close the menu.

92 MotionCreatorPro

In this menu, you can configure LTC, SD, PCS, and Select_Input.

1. LTC Logic: Select the logic of the LTC signal. The
related function call is _8158_set_ltc_logic().

2. LTC latch_source: Select the logic of the latch_source
signal. The related function call is
_8158_set_latch_source ().

3. SD Configuration: Configure the SD signal. The related
function call is _8158_set_sd().

4. PCS Logic: Select the logic of the SelectNo signal. The
related function call is _8158_set_pcs_logic().

5. Set gpio input: Select the configurations of the gpio
input. The related function call is
_8158_set_gpio_input_function.

6. Gpio Logic: Select the logic of the gpio. The related

MotionCreatorPro 93

function call is _8158_set_gpio_input_function.

7. Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.
Save Config: Save current configuration to 8158.ini And
8158MC.ini.
Close: Close the menu.

94 MotionCreatorPro

In this menu, you can configure pulse input/output and move ratio
and INT factor.

1. Pulse Output Mode: Select the output mode of the
pulse signal (OUT/ DIR). The related function call is
_8158_set_pls_outmode().

2. Pulse Input: Sets the configurations of the Pulse input
signal(EA/EB). The related function calls are
_8158_set_pls_iptmode(), _8158_set_feedback_src().

3. INT Factor: Select factors to initiate the event int. The
related function call is _8158_set_int_factor().

4. Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.
Save Config: Save current configuration to 8158.ini And
8158MC.ini.
Close: Close the menu.

MotionCreatorPro 95

5.3.5 Single Axis Operation Menu
In this menu, you can change the settings a selected axis, includ-
ing velocity mode motion, preset relative/absolute motion, manual
pulse move, and home return.

1. Position:

Command: displays the value of the command counter.
The related function is _8158_get_command().
Feedback: displays the value of the feedback position
counter. The related function is _8158_get_position()
Pos Error: displays the value of the position error
counter. The related function is
_8158_get_error_counter().
Target Pos: displays the value of the target position
recorder. The related function is

96 MotionCreatorPro

_8158_get_target_pos().

2. Position Reset: clicking this button will set all position-
ing counters to a specified value. The related functions
are:
 _8158_set_position()
 _8158_set_command()
 _8158_reset_error_counter()
 _8158_reset_target_pos()

3. Motion Status: Displays the returned value of the
_8158_motion_done function. The related function is
_8158_motion_done().

4. INT Status:

int_factor bit no: Set int_factor bit.
Normal INT: display of Normal INT status. The related
function is _8158_wait_motion_interrupt ().
Error INT: display of Error INT status. The related func-
tion is _8158_wait_error_interrupt ().
GPIO INT: display of GPIO INT status. The related func-
tion is _8158_wait_gpio_interrupt ().

5. Velocity: The absolute value of velocity in units of PPS.
The related function is _8158_get_current_speed().

6. Show Velocity Curve Button: Clicking this button will
open a window showing a velocity vs. time curve. In this
curve, every 100ms, a new velocity data point will be
added. To close it, click the same button again. To clear
data, click on the curve.

MotionCreatorPro 97

7. Operation Mode: Select operation mode.

Absolute Mode: “Position1” and “position2” will be used
as absolution target positions for motion. The related
functions are _8158_start_ta_move(),
_8158_start_sa_move().
Relative Mode: “Distance” will be used as relative dis-
placement for motion. The related function is
_8158_start_tr_move(), _8158_start_sr_move().
Cont. Move: Velocity motion mode. The related function
is _8158_tv_move(), _8158_start_sv_move().
Manual Pulse Move: Manual Pulse motion. Clicking this
button will invoke the manual pulse configuration win-
dow.

Home Mode: Home return motion. Clicking this button
will invoke the home move configuration window. The
related function is _8158_set_home_config().If the

98 MotionCreatorPro

check box “ATU” is checked, it will execute auto homing
when motion starts.
ERC Output: Select if the ERC signal will be sent when
home move completes.
EZ Count: Set the EZ count number, which is effective
on certain home return modes.
Mode: Select the home return mode. There are 13
modes available.
Home Mode figure: The figure shown explains the
actions of the individual home modes.
Close: Click this button close this window.

8. Position: Set the absolute position for “Absolute Mode.”
It is only effective when “Absolute Mode” is selected.

9. Distance: Set the relative distance for “Relative Mode.”
It is only effective when “Relative Mode” is selected.

10.Repeat Mode: When “On” is selected, the motion will
become repeat mode (forward<->backward or

MotionCreatorPro 99

position1<->position2). It is only effective when “Relative
Mode” or “Absolute Mode” is selected.

11.Vel. Profile: Select the velocity profile. Both Trapezoidal
and S-Curve are available for “Absolute Mode,” “Relative
Mode,” and “Cont. Move.”

12.FA Speed/ATU: Sets the configurations of the FA
Speed. The related function calls are
_8158_set_fa_speed().If the check box “ATU” is
checked, it will execute auto homing when motion starts.

13.Motion Parameters: Set the parameters for single axis
motion. This parameter is meaningless if “Manual Pulse
Move” is selected, since the velocity and moving dis-
tance is decided by pulse input.

Start Velocity: Set the start velocity of motion in units of
PPS. In “Absolute Mode” or “Relative Mode,” only the
value is effective. For example, -100.0 is the same as
100.0. In “Cont. Move,” both the value and sign are
effective. –100.0 means 100.0 in the minus direction.
Maximum Velocity: Set the maximum velocity of motion
in units of PPS. In “Absolute Mode” or “Relative Mode,”
only the value is effective. For example, -5000.0 is the
same as 5000.0. In “Cont. Move,” both the value and
sing is effective. –5000.0 means 5000.0 in the minus
direction.
Accel. Time: Set the acceleration time in units of sec-
ond.
Decel. Time: Set the deceleration time in units of sec-
ond.
SVacc: Set the S-curve range during acceleration in
units of PPS.
SVdec: Set the S-curve range during deceleration in
units of PPS.
Move Delay: This setting is effective only when repeat
mode is set “On.” It will cause the 8158 to delay for a
specified time before it continues to the next motion.

100 MotionCreatorPro

14.Speed_Profile: Clicking this button will show the Speed
Profile.

15.Digital I/O: Display and set Digital I/O. The related func-
tion is
_8158_get_gpio_output(),_8158_get_gpio_input(),
_8158_set_gpio_output().

16.Servo On: Set the SVON signal output status. The
related function is _8158_set_servo().

17.Play Key:

Left play button: Clicking this button will cause the 8158 start
to outlet pulses according to previous setting.

In “Absolute Mode,” it causes the axis to move to
position1.
In “Relative Mode,” it causes the axis to move forward.
In “Cont. Move,” it causes the axis to start to move
according to the velocity setting.
In “Manual Pulse Move,” it causes the axis to go into
pulse move. The speed limit is the value set by “Maxi-
mum Velocity.”

MotionCreatorPro 101

Right play button: Clicking this button will cause the 8158
start to outlet pulses according to previous setting.

In “Absolute Mode,” it causes the axis to move to posi-
tion.
In “Relative Mode,” it causes the axis to move back-
wards.
In “Cont. Move,” it causes the axis to start to move
according to the velocity setting, but in the opposite
direction.
In “Manual Pulse Move,” it causes the axis to go into
pulse move. The speed limit is the value set by “Maxi-
mum Velocity.”

18.Stop Button: Clicking this button will cause the 8158 to
decelerate and stop. The deceleration time is defined in
“Decel. Time.” The related function is _8158_sd_stop().

19.I/O Status: The status of motion I/O. Light-On means
Active, while Light-Off indicates inactive. The related
function is _8158_get_io_status().

20.Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.
Save Config: Save current configuration to 8158.ini And
8158MC.ini.
Close: Close the menu.

102 MotionCreatorPro

5.3.6 Two-Axis Operation Menu
In this menu, users can change the settings two selected axis,
including velocity mode motion, preset relative/absolute motion.

1. Motion Parameters: Set the parameters for single axis
motion. This parameter is meaningless if “Manual Pulse
Move” is selected, since the velocity and moving dis-
tance is decided by pulse input.

Start Velocity: Set the start velocity of motion in units of
PPS. In “Absolute Mode” or “Relative Mode,” only the
value is effective. For example, -100.0 is the same as
100.0.
Maximum Velocity: Set the maximum velocity of motion
in units of PPS. In “Absolute Mode” or “Relative Mode,”
only the value is effective. For example, -5000.0 is the
same as 5000.0.

MotionCreatorPro 103

Tacc: Set the acceleration time in units of second.
Tdec: Set the deceleration time in units of second.
Sacc: Set the S-curve range during acceleration in units
of PPS.
Sdec: Set the S-curve range during deceleration in units
of PPS.

2. Repeat Mode: When “On” is selected, the motion will
become repeat mode (forward<->backward or
position1<->position2). It is only effective when “Relative
Mode” or “Absolute Mode” is selected.

3. Vel. Profile: Select the velocity profile. Both Trapezoidal
and S-Curve are available for “Absolute Mode,” “Relative
Mode,” and “Cont. Move.”

4. Operation Mode: Select operation mode.

Absolute Mode: “Position1” and “position2” will be used
as absolution target positions for motion. The related
functions are _8158_start_ta_move(),
_8158_start_sa_move().
Relative Mode: “Distance” will be used as relative dis-
placement for motion. The related function is
_8158_start_tr_move(), _8158_start_sr_move().

5. Distance: Set the relative distance for “Relative Mode.”
It is only effective when “Relative Mode” is selected.

6. Position: Set the absolute position for “Absolute Mode.”
It is only effective when “Absolute Mode” is selected.

7. Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.

8. I/O Status: The status of motion I/O. Light-On means
Active, while Light-Off indicates inactive. The related
function is _8158_get_io_status().

9. Motion status: Displays the returned value of the
_8158_motion_done function. The related function is
_8158_motion_done().

104 MotionCreatorPro

10.Current Position:

Command: displays the value of the command counter.
The related function is _8158_get_position().

11.Velocity: The absolute value of velocity in units of PPS.
The related function is _8158_get_current_speed().

12.Play Key:

Left play button: Clicking this button will cause the 8158 start
to outlet pulses according to previous setting.

In “Absolute Mode”, it causes the axis to move to
position1.
In “Relative Mode”, it causes the axis to move forward.

Right play button: Clicking this button will cause the 8158
start to outlet pulses according to previous setting.

In “Absolute Mode”, it causes the axis to move to
position2.
In “Relative Mode”, it causes the axis to move back-
wards.

Stop Button: Clicking this button will cause the 8158 to decel-
erate and stop. The deceleration time is defined in “Decel.
Time.” The related function is _8158_sd_stop().

13.Buttons:

Axis0 Reset: clicking this button will set all positioning
counters of selected axis to zero. The related functions
are:

_8158_set_position()
_8158_set_command()
_8158_reset_error_counter()
_8158_reset_target_pos()

Axis1 Reset: clicking this button will set all positioning
counters of selected axis to zero.
ClearPlots: Clear the Motion Graph.
Save Config: Save current configuration to 8158.ini and
8158MC.ini.
Close: Close the menu.

MotionCreatorPro 105

5.3.7 2D_Motion Menu
Press 2-D button in operating window will enter this window. This
is for 2-D motion test. It includes the following topics:

Linear Interpolation
Circular Interpolation
Incremental Jog
Continuous Jog
Other Control Objects

1. Jog Type:

Continuous Jog: Continuous Jog means that when you
press one directional button, the axis will continuously
move with an increasing speed. The longer you press,

106 MotionCreatorPro

the faster it runs. When you un-press the button, the axis
will stop immediately.

Incremental Jog: Incremental jog means that when you
click one directional button, the axis will step a distance
according to the Step-Size’s setting.

2. Jog Setting: Set the parameters for single axis motion.
This parameter is meaningless if “Jog Mode” is
selected, since the velocity and moving distance is
decided by pulse input.

Start Velocity: Set the start velocity of motion in units of
PPS.
Maximum Velocity: Set the maximum velocity of motion
in units of PPS.
Tacc: Set the acceleration time in units of second.

3. Operation Mode: Select operation mode.

Absolute Mode: “Position” will be used as absolution
target positions for motion when “Linear Interpolation
Mode” is selected. “ABS EndPos” and “ABS Center” will
be used as absolution target positions for motion when
“Circular Interpolation Mode” is selected. The related
functions are _8158_start_ta_move(),
_8158_start_sa_move().
Relative Mode: “Distance” will be used as absolution

MotionCreatorPro 107

target positions for motion when “Linear Interpolation
Mode” is selected. “Dis EndPos” and “Dis Center” will be
used as absolution target positions for motion when “Cir-
cular Interpolation Mode” is selected. The related func-
tion is _8158_start_tr_move(), _8158_start_sr_move().

4. DIR: Specified direction of arc, CW/CCW, It is only effec-
tive when “Circular Interpolation Mode” is selected.

5. Vel. Profile: Select the velocity profile. Both Trapezoidal
and S-Curve are available for “Linear Interpolation
Mode” and “Circular Interpolation Mode”.

6. Speed Parameters: Set the parameters for single axis
motion. This parameter is meaningless if “Linear Interpo-
lation Mode” or “Circular Interpolation Mode” is selected,
since the velocity and moving distance is decided by
pulse input.

Start Velocity: Set the start velocity of motion in units of
PPS.
Maximum Velocity: Set the maximum velocity of motion
in units of PPS.
Accel. Time: Set the acceleration time in units of sec-
ond.
Decel. Time: Set the deceleration time in units of sec-
ond.
SVacc: Set the S-curve range during acceleration in
units of PPS.
SVdec: Set the S-curve range during deceleration in
units of PPS.

7. Set Distance/End Pos: Set the absolution target posi-
tions or relative distance for “Linear Interpolation Mode” .
Set the position end of arc for “Circular Interpolation
Mode”. It is available for “Linear Interpolation Mode” and
“Circular Interpolation Mode”.

8. Set Center: Set the position of center for “Circular Inter-
polation Mode”. It is only effective when “Circular Inter-
polation Mode” is selected.

108 MotionCreatorPro

9. Jog Command: Press one directional button to move.

10.Velocity: The absolute value of velocity in units of PPS.
The related function is _8158_get_current_speed().

11. Interpolation Command:

Command: displays the value of the command counter.
The related function is _8158_get_command().

12.Current Position:

Feedback: displays the value of the feedback position
counter. The related function is _8158_get_position().

13.Home Mode: Home return motion. Clicking this button
will invoke the home move configuration window. The
related function is _8158_set_home_config().There are
two home return buttons at the left-down corner of this
window. It is useful when user need to return to the ori-
gin.

14.Mode:

Linear Interpolation: After setting motion parameters
correctly in “Motion Parameters Setting Frame”, you can
enter the destination in this frame. Then click Run button
to start linear interpolation motion.
Circular Interpolation: The setting for circular interpola-
tion mode has three additional parameters in “Motion
Parameters Setting Frame”. They are arc degree, divi-
sion axis and optimize option. Please refer to section 6.7
,6.8 to set them.

MotionCreatorPro 109

After setting these parameters, you can enter the arc center
and degree in “Play Key Frame”. Click Run button to start cir-
cular interpolation motion.

Jog Type: Continuous Jog

Continuous Jog means that when you press one directional
button, the axis will continuously move with an increasing
speed. The longer you press, the faster it runs. When you un-
press the button, the axis will stop immediately.

Incremental Jog: Incremental jog means that when you
click one directional button, the axis will step a distance
according to the Step-Size’s setting.

15.Motion status: Displays the returned value of the
_8158_motion_done function. The related function is
_8158_motion_done().

16.Play Key:

Play button: Clicking this button will cause the 8158 start to
outlet pulses according to previous setting.

In “Linear Mode,” it causes the axis to move to Distance.
The related function is _8158_start_tr_move_xy,
_8158_start_sr_move_xy.
In “Circular Mode,” it causes the axis to move to Dis-
tance(By Pos/Dist(pulse)).The related function is
_8158_start_tr_arc_xy, _8158_start_sr_arc_xy.

110 MotionCreatorPro

Stop Button: Clicking this button will cause the 8158 to
decelerate and stop. The deceleration time is defined in
“Decel. Time.” The related function is _8158_sd_stop().

17.Buttons:

•Next Card: Change operating card.
•Save Config: Save current configuration to 8158.ini
And 8158MC.ini.
•Close: Close the menu.

18.Graph Range Frame:

Clear: Clear the Motion Graph.
Center: Display the Motion Graph in center position.

19.Graph Range: controls X or Y axis’s display range.

20.Origin Position: let user to pan the display location.

MotionCreatorPro 111

5.3.8 Help Menu
In this menu, users can Click Mouse Right Key to show Help Infor-
mation.

112 MotionCreatorPro

Function Library 113

6 Function Library
This chapter describes the supporting software for the PCI-8158
card. User can use these functions to develop programs in C,
C++, or Visual Basic. If Delphi is used as the programming envi-
ronment, you will need to transform the header files and
pci_8158.h manually.

114 Function Library

6.1 List of Functions

System & Initialization Section 6.3

Pulse Input/Output Configuration Section 6.4

Velocity mode motion Section 6.5

Function Name Description

_8158_initial Card initialization
_8158_close Card Close
_8158_get_version Check the hardware and software version
_8158_set_security_key Set security the password
_8158_check_security_key Check security the password
_8158_reset_security_key Reset the security password to default value
_8158_config_from_file Config PCI-8158 setting from file

Function Name Description

_8158_set_pls_outmode Set pulse command output mode
_8158_set_pls_iptmode Set encoder input mode
_8158_set_feedback_src Set counter input source

Function Name Description

_8158_tv_move Accelerate an axis to a constant velocity with trape-
zoidal profile

_8158_sv_move Accelerate an axis to a constant velocity with S-
curve profile

_8158_sd_stop Decelerate to stop
_8158_emg_stop Immediately stop
_8158_get_current_speed Get current speed(pulse/sec)
_8158_speed_override Change speed on the fly
_8158_set_max_override_s
peed Set the maximum override speed

Function Library 115

Single Axis Position Mode Section 6.6

Linear Interpolated Motion Section 6.7

Function Name Description

_8158_start_tr_move Begin a relative trapezoidal profile move
_8158_start_ta_move Begin an absolute trapezoidal profile move
_8158_start_sr_move Begin a relative S-curve profile move
_8158_start_sa_move Begin an absolute S-curve profile move

_8158_set_move_ratio Set the ratio of command pulse and feedback
pulse.

_8158_position_override Change position on the fly

Function Name Description

_8158_start_tr_move_xy Begin a relative 2-axis linear interpolation for X & Y,
with trapezoidal profile

_8158_start_ta_move_xy Begin an absolute 2-axis linear interpolation for X &
Y, with trapezoidal profile

_8158_start_sr_move_xy Begin a relative 2-axis linear interpolation for X & Y,
with S-curve profile

_8158_start_sa_move_xy Begin an absolute 2-axis linear interpolation for X &
Y, with S-curve profile

_8158_start_tr_move_zu Begin a relative 2-axis linear interpolation for Z &
U, with trapezoidal profile

_8158_start_ta_move_zu Begin an absolute 2-axis linear interpolation for Z &
U, with trapezoidal profile

_8158_start_sr_move_zu Begin a relative 2-axis linear interpolation for Z &
U, with S-curve profile

_8158_start_sa_move_zu Begin a s-curve absolute circular interpolation for Z
& U

_8158_start_tr_move_ab Begin a relative 2-axis linear interpolation for A &
B, with trapezoidal profile

_8158_start_ta_move_ab Begin an absolute 2-axis linear interpolation for A &
B, with trapezoidal profile

_8158_start_sr_move_ab Begin a relative 2-axis linear interpolation for A &
B, with S-curve profile

_8158_start_sa_move_ab Begin a s-curve absolute circular interpolation for A
& B

116 Function Library

_8158_start_tr_move_cd Begin a relative 2-axis linear interpolation for C &
D, with trapezoidal profile

_8158_start_ta_move_cd Begin an absolute 2-axis linear interpolation for C &
D, with trapezoidal profile

_8158_start_sr_move_cd Begin a relative 2-axis linear interpolation for C &
D, with S-curve profile

_8158_start_sa_move_cd Begin an absolute 2-axis linear interpolation for C &
D, with S-curve profile

_8158_start_tr_line2 Begin a relative 2-axis linear interpolation for any 2
of 4 axes, with trapezoidal profile

_8158_start_ta_line2 Begin an absolute 2-axis linear interpolation for any
2 of 4 axes, with trapezoidal profile

_8158_start_sr_line2 Begin a relative 2-axis linear interpolation for any 2
of 4 axes, with S-curve profile

_8158_start_sa_line2 Begin an absolute 2-axis linear interpolation for any
2 of 4 axes, with S-curve profile

_8158_start_tr_line3 Begin a relative 3-axis linear interpolation for any 3
of 4 axes, with trapezoidal profile

_8158_start_ta_line3 Begin an absolute 3-axis linear interpolation for any
3 of 4 axes, with trapezoidal profile

_8158_start_sr_line3 Begin a relative 3-axis linear interpolation for any 3
of 4 axes, with S-curve profile

_8158_start_sa_line3 Begin an absolute 3-axis linear interpolation for any
3 of 4 axes, with S-curve profile

_8158_start_tr_line4 Begin a relative 4-axis linear interpolation for any 4
of 4 axes, with trapezoidal profile

_8158_start_ta_line4 Begin an absolute 4-axis linear interpolation for any
4 of 4 axes, with trapezoidal profile

_8158_start_sr_line4 Begin a relative 4-axis linear interpolation for any 4
of 4 axes, with S-curve profile

_8158_start_sa_line4 Begin an absolute 4-axis linear interpolation for any
4 of 4 axes, with S-curve profile

Function Name Description

Function Library 117

Circular Interpolation Motion Section 6.8

Function Name Description

_8158_start_tr_arc_xy Begin a t-curve relative circular interpolation for X &
Y

_8158_start_ta_arc_xy Begin a t-curve absolute circular interpolation for X
& Y

_8158_start_sr_arc_xy Begin a s-curve relative circular interpolation for X
& Y

_8158_start_sa_arc_xy Begin a s-curve absolute circular interpolation for X
& Y

_8158_start_tr_arc_zu Begin a t-curve relative circular interpolation for Z &
U

_8158_start_ta_arc_zu Begin a t-curve absolute circular interpolation for Z
& U

_8158_start_sr_arc_zu Begin a s-curve relative circular interpolation for Z
& U

_8158_start_sa_arc_zu Begin a s-curve absolute circular interpolation for Z
& U

_8158_start_tr_arc_ab Begin a t-curve relative circular interpolation for A &
B

_8158_start_ta_arc_ab Begin a t-curve absolute circular interpolation for A
& B

_8158_start_sr_arc_ab Begin a s-curve relative circular interpolation for A
& B

_8158_start_sa_arc_ab Begin a s-curve absolute circular interpolation for A
& B

_8158_start_tr_arc_cd Begin a t-curve relative circular interpolation for C
& D

_8158_start_ta_arc_cd Begin a t-curve absolute circular interpolation for C
& D

_8158_start_sr_arc_cd Begin a s-curve relative circular interpolation for C
& D

_8158_start_sa_arc_cd Begin a s-curve absolute circular interpolation for C
& D

_8158_start_tr_arc2 Begin a t-curve relative circular interpolation for
any 2 of 4 axes

118 Function Library

Home Return Mode Section 6.9

Manual Pulse Motion Section 6.10

Motion Status Section 6.11

Motion Interface I/O Section 6.12

_8158_start_ta_arc2 Begin a t-curve absolute circular interpolation for
any 2 of 4 axes

_8158_start_sr_arc2 Begin a s-curve relative circular interpolation for
any 2 of 4 axes

_8158_start_sa_arc2 Begin a s-curve absolute circular interpolation for
any 2 of 4 axes

Function Name Description

_8158_set_home_config Set the home/index logic configuration
_8158_home_move Begin a home return action
_8158_home_search Perform an auto search home

Function Name Description

_8158_set_pulser_iptmode Set pulse input mode
_8158_disable_pulser_input Disable the pulse input
_8158_pulser_vmove Start pulse v move
_8158_pulser_pmove Start pulse p move
_8158_set_pulser_ratio Set manual pulse ratio for actual output pulse rate

Function Name Description

_8158_motion_done Return the motion status

Function Name Description

_8158_set_servo Set On-Off state of SVON signal
_8158_set_pcs_logic Set PCS(Position Change Signal) signal’s logic
_8158_set_pcs Enable PCS for position override
_8158_set_clr_mode Set CLR signal’s mode
_8158_set_inp Set INP signal’s logic and operating mode

Function Name Description

Function Library 119

Interrupt Control Section 6.13

Position Control and Counters Section 6.14

_8158_set_alm Set ALM signal’s logic and operating mode
_8158_set_erc Set ERC signal’s logic and timing
_8158_set_erc_out Output an ERC signal
_8158_clr_erc Clear the ERC signal
_8158_set_sd Set SD signal’s logic and operating mode
_8158_enable_sd Enable SD signal
_8158_set_limit_logic Set EL signal’s logic
_8158_set_limit_mode Set EL operating mode
_8158_get_io_status Get all the motion I/O status of 8158

Function Name Description

_8158_int_control Enable/Disable INT service
_8158_wait_error_interrupt Wait error related interrupts
_8158_wait_motion_interrupt Wait motion related interrupts
_8158_set_motion_int_factor Set the factors of motion related interrupts

Function Name Description

_8158_get_position Get the value of the feedback position counter
_8158_set_position Set the feedback position counter
_8158_get_command Get the value of the command position counter
_8158_set_command Set the command position counter
_8158_get_error_counter Get the value of the position error counter
_8158_reset_error_counter Reset the position error counter
_8158_get_general_counter Get the value of the general counter
_8158_set_general_counter Set the general counter
_8158_get_target_pos Get the value of the target position recorder
_8158_reset_target_pos Reset target position recorder
_8158_get_res_distance Get remaining pulses accumulated from motions
_8158_set_res_distance Set remaining pulses record

Function Name Description

120 Function Library

Position Compare and Latch Section 6.15

Continuous Motion Section 6.16

Multiple Axes Simultaneous Operation Section 6.17

General-purposed Input/Output Section 6.18

Function Name Description

_8158_set_trigger_logic Set CMP signal logic
_8158_set_error_comparator Set the error comparator
_8158_set_general_comparator Set the general comparator
_8158_set_trigger_comparator Set the trigger comparator
_8158_set_latch_source Set the latch timing for a counter
_8158_set_ltc_logic Set the LTC signal’s logic
_8158_get_latch_data Get the latch data

Function Name Description

_8158_set_continuous_move Enable continuous motion for absolute motion
_8158_check_continuous_buffer Check if the buffer is empty
_8158_dwell_move Set a dwell move

Function Name Description

_8158_set_tr_move_all Multi-axis simultaneous operation setup
_8158_set_ta_move_all Multi-axis simultaneous operation setup
_8158_set_sr_move_all Multi-axis simultaneous operation setup
_8158_set_sa_move_all Multi-axis simultaneous operation setup
_8158_start_move_all Begin a multi-axis trapezoidal profile motion
_8158_stop_move_all Simultaneously stop multi-axis motion

Function Name Description

_8158_set_gpio_output Set digital output
_8158_get_gpio_output Get digital output
_8158_get_gpio_input Get digital input
_8158_set_gpio_input_function Set the signal types to any digital inputs

Function Library 121

Soft Limit 6.19

Backlash Compensation / Vibration Suppression 6.20

Speed Profile Calculation 6.21

Function Name Description

_8158_disable_soft_limit Disable soft limit function
_8158_enable_soft_limit Enable soft limit function
_8158_set_soft_limit Set the soft limits

Function Name Description

_8158_backlash_comp Set backlash corrective pulse for compensation
_8158_suppress_vibration Set suppress vibration idle pulse counts
_8158_set_fa_speed Set FA speed for home mode

Function Name Description

_8158_get_tr_move_profile Get relative trapezoidal speed profile
_8158_get_ta_move_profile Get absolute trapezoidal speed profile
_8158_get_sr_move_profile Get relative S-curve speed profile
_8158_get_sa_move_profile Get absolute S-curve speed profile

122 Function Library

6.2 C/C++ Programming Library
This section details all the functions. The function prototypes and
some common data types are declared in pci_8158.h. We suggest
you use these data types in your application programs. The follow-
ing table shows the data type names and their range.

The functions of the PCI-8158’s software drivers use full-names to
represent the functions real meaning. The naming convention
rules are:

In a “C” programming environment:

_{hardware_model}_{action_name}. e.g. _8158_initial().

In order to recognize the difference between a C library and a VB
library, a capital “B” is placed at the beginning of each function
name, e.g. B_8158_initial().

Type Name Description Range
U8 8-bit ASCII character 0 to 255

I16 16-bit signed integer -32768 to 32767

U16 16-bit unsigned integer 0 to 65535

I32 32-bit signed long integer -2147483648 to 2147483647

U32 32-bit unsigned long integer 0 to 4294967295

F32 32-bit single-precision floating-point -3.402823E38 to 3.402823E38

F64 64-bit double-precision floating-point -1.797683134862315E308
to 1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

Function Library 123

6.3 System & Initialization

@ Name
_8158_initial – Card initialization

_8158_close – Card close

_8158_get_version – Check hardware and software version
information

_8158_set_security_key – Set the security password

_8158_check_security_key – Check the security password

_8158_reset_security_key – Rest the security password to
default

_8158_config_from_file Config – PCI-8158 setting from file

@ Description
_8158_initial:

This function is used to initialize an 8158 card and assign hard-
ware resources. All 8158 cards must be initialized by this func-
tion before calling other functions in your applications. By
setting the parameter “Manual_ID”, user can choose the type
that the card’s ID is assigned manually or automatically.

_8158_close:

This function is used to close 8158 card and release its
resources, which should be called at the end of your applica-
tions.

_8158_get_version:

Lets users read back the firmware’s, driver’s and DLL’s version
information.

_8158_set_security_key:

This function is used to set a security code to the PCI card.

See also: _8158_check_security_key,
_8158_reset_security_key

_8158_check_security_key:

124 Function Library

This function is used to verify the security code which the user
set by the function “_8158_set_security_key”.

See also: _8158_set_security_key, _8158_reset_security_key

_8158_reset_security_key:

By this function, Users can reset the security code on the PCI
card to default value. The default security code is 0.

See also: _8158_check_security_key, _8158_set_security_key

_8158_config_from_file:

This function is used to load the configuration of the PCI-8158
according to specified file. By using MotionCreatorPro, user
could test and configure the 8158 correctly. After saving the
configuration, the file would be existed in user’s system direc-
tory as 8158.ini.

When this function is executed, all 8158 cards in the system
will be configured as the following functions were called
according to parameters recorded in 8158.ini.

_8158_set_limit_logic
_8158_set_pcs_logic
_8158_set_ltc_logic
_8158_set_inp
_8158_set_erc
_8158_set_alm
_8158_set_pls_iptmode
_8158_set_pls_outmode
_8158_set_move_ratio
_8158_set_latch_source
_8158_set_feedback_src
_8158_set_home_config
_8158_set_soft_limit
_8158_set_fa_speed
_8158_set_sd

Function Library 125

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_initial(I16 *CardID_InBit, I16

Manual_ID);
I16 _8158_close(void);
I16 _8158_get_version(I16 card_id, I16

*firmware_ver, I32 *driver_ver, I32
*dll_ver);

I16 _8158_set_security_key(I16 card_id, I16
old_secu_code, I16 new_secu_code);

I16 _8158_check_security_key(I16 card_id, I16
secu_code);

I16 _8158_reset_security_key(I16 card_id);
I16 _8158_config_from_file();

Visual Basic 6(Windows 2000/XP)
B_8158_initial(CardID_InBit As Integer, ByVal

Manual_ID As Integer) As Integer
B_8158_close() As Integer
B_8158_get_version(ByVal card_id As Integer,

firmware_ver As Integer, driver_ver As Long,
dll_ver As Long) As Integer

B_8158_set_security_key(ByVal card_id As Integer,
ByVal old_secu_code As Integer, ByVal
new_secu_code As Integer) As Integer

B_8158_check_security_key(ByVal card_id As
Integer, ByVal secu_code As Integer)As
Integer

B_8158_reset_security_key(ByVal card_id As
Integer);

B_8158_config_from_file() As Integer

@ Argument
CardID_InBit:

Manual_ID: Enable the On board dip switch (SW1) to decide the
Card ID

Value meaning:

The CardID could be decided by:

0: the sequence of PCI slot.

126 Function Library

1: on board DIP switch (SW1).

card_id: Specify the PCI-8158 card index. The card_id could be
decided by DIP switch (SW1) or depend on slot sequence. Please
refer to _8158_initial().

firmware_ver: The current firmware version.

driver_ver: The current device driver version.

dll_ver: The current DLL library version.

old_secu_code: Old security code.

new_secu_code: New security code.

secu_code: security code.

Function Library 127

6.4 Pulse Input/Output Configuration

@ Name
_8158_set_pls_iptmode – Set the configuration for feedback
pulse input.

_8158_set_pls_outmode – Set the configuration for pulse
command output.

_8158_set_feedback_src – Enable/Disable the external feed-
back pulse input

@ Description
_8158_set_pls_iptmode:

Configure the input modes of external feedback pulses. There
are 4 types for feedback pulse input. Note that this function
makes sense only when the Src parameter in
_8158_set_feedback_src() function is enabled.

_8158_set_pls_outmode:

Configure the output modes of command pulses. There are 6
modes for command pulse output.

_8158_set_feedback_src:

If external encoder feedback is available in the system, set the
Src parameter in this function to an Enabled state. Then, the
internal 28-bit up/down counter will count according to the con-
figuration of the _8158_set_pls_iptmode() function. Else, the
counter will count the command pulse output.

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_set_pls_iptmode(I16 AxisNo, I16

pls_iptmode, I16 pls_logic);
I16 _8158_set_pls_outmode(I16 AxisNo, I16

pls_outmode);
I16 _8158_set_feedback_src(I16 AxisNo, I16 Src);

128 Function Library

Visual Basic6 (Windows 2000/XP)
B_8158_set_pls_iptmode(ByVal AxisNo As Integer,

ByVal pls_iptmode As Integer, ByVal
pls_logic As Integer) As Integer

B_8158_set_pls_outmode(ByVal AxisNo As Integer,
ByVal pls_outmode As Integer) As Integer

B_8158_set_feedback_src(ByVal AxisNo As Integer,
ByVal Src As Integer) As Integer

@ Argument
AxisNo: Axis number designated to configure pulse Input/Output.

pls_iptmode: setting of encoder feedback pulse input mode

pls_logic: Logic of encoder feedback pulse

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Value Meaning

0 1X A/B
1 2X A/B
2 4X A/B
3 CW/CCW

Value Meaning

0 Not inverse direction
1 Inverse direction

Function Library 129

pls_outmode: Setting of command pulse output mode.

Src: Counter source

Value Meaning

0 External Feedback
1 Command pulse

130 Function Library

6.5 Velocity mode motion

@ Name
_8158_tv_move – Accelerate an axis to a constant velocity with
trapezoidal profile

_8158_sv_move – Accelerate an axis to a constant velocity with
S-curve profile

_8158_emg_stop – Immediately stop

_8158_sd_stop – Decelerate to stop

_8158_get_current_speed – Get current speed

_8158_speed_override – Change speed on the fly

_8158_set_max_override_speed – Set the maximum over-
ride speed

@ Description
_8158_tv_move:

This function is to accelerate an axis to the specified constant
velocity with a trapezoidal profile. The axis will continue to
travel at a constant velocity until the velocity is changed or the
axis is commanded to stop. The direction is determined by the
sign of the velocity parameter.

_8158_sv_move:

This function is to accelerate an axis to the specified constant
velocity with a S-curve profile. The axis will continue to travel at
a constant velocity until the velocity is changed or the axis is
commanded to stop. The direction is determined by the sign of
velocity parameter.

_8158_emg_stop:

This function is used to immediately stop an axis. This function
is also useful when a preset move (both trapezoidal and S-
curve motion), manual move, or home return function is per-
formed.

_8158_sd_stop:

Function Library 131

This function is used to decelerate an axis to stop with a trape-
zoidal or S-curve profile. This function is also useful when a
preset move (both trapezoidal and S-curve motion), manual
move, or home return function is performed. Note: The velocity
profile is decided by original motion profile.

_8158_get_current_speed:

This function is used to read the current pulse output rate
(pulse/sec) of a specified axis. It is applicable in any time in any
operation mode.

_8158_speed_override:

When in motion operation, (such as executing
"_8158_tv_move"), this function can be used to change the
speed on the fly. Please refer to section 4.2.14.

See also : _8158_set_max_override_speed

8158_set_max_override_speed:

This function is used to set the maximum override speed
(100% speed) before speed override operation. Please refer to
Section 4.2.14

See also: _8158_speed_override

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_tv_move(I16 AxisNo, F64 StrVel, F64

MaxVel, F64 Tacc);
I16 _8158_sv_move(I16 AxisNo, F64 StrVel, F64

MaxVel, F64 Tacc, F64 SVacc);
I16 _8158_emg_stop(I16 AxisNo);
I16 _8158_sd_stop(I16 AxisNo, F64 Tdec);
I16 _8158_get_current_speed(I16 AxisNo, F64

*speed)
I16 _8158_set_max_override_speed(I16 AxisNo, F64

OvrdSpeed, I16 Enable);

132 Function Library

Visual Basic6 (Windows 2000/XP)
B_8158_tv_move(ByVal AxisNo As Integer, ByVal

StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double) As Integer

B_8158_sv_move(ByVal AxisNo As Integer, ByVal
StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double, ByVal SVacc As Double)
As Integer

B_8158_emg_stop(ByVal AxisNo As Integer) As
Integer

B_8158_sd_stop(ByVal AxisNo As Integer, ByVal
Tdec As Double) As Integer

B_8158_get_current_speed(ByVal AxisNo As Integer,
ByRef Speed As Double) As Integer

B_8158_set_max_override_speed(ByVal AxisNo As
Integer, ByVal OvrdSpeed As Double, ByVal
Enable As Integer) As Integer

@ Argument
AxisNo: Axis number designated to move or stop.

StrVel: Starting velocity in units of pulse per second

MaxVel: Maximum velocity in units of pulse per second

Tacc: Specified acceleration time in units of second

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve

Tdec: specified deceleration time in units of second

*Speed: Variable to get current speed (pulse/sec).

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Function Library 133

NewVelPercent: The Percentage of maximum override speed
(100% speed)

Time: The duration time of current speed to override speed. Unit:
sec

OvrdSpeed:The maximum override speed (pulse/s)

Enable: 0:disable, 1:enable the override speed operation

134 Function Library

6.6 Single Axis Position Mode

@ Name
_8158_start_tr_move – Begin a relative trapezoidal profile
move

_8158_start_ta_move – Begin an absolute trapezoidal profile
move

_8158_start_sr_move – Begin a relative S-curve profile move

_8158_start_sa_move – Begin an absolute S-curve profile
move

_8158_set_move_ratio – Set the ration of command pulse
and feedback pulse

_8158_position_override – Change position on the fly

@ Description

General:
The moving direction is determined by the sign of the Pos or
Dist parameter. If the moving distance is too short to reach the
specified velocity, the controller will automatically lower the
MaxVel, and the Tacc, Tdec, VSacc, and VSdec will also
become shorter while dV/dt(acceleration / deceleration) and
d(dV/dt)/dt (jerk) are keep unchanged.

_8158_start_tr_move:

This function causes the axis to accelerate form a starting
velocity (StrVel), rotate at constant velocity (MaxVel), and
decelerate to stop at the relative distance with trapezoidal pro-
file. The acceleration (Tacc) and deceleration (Tdec) time is
specified independently–it does not let the program wait for
motion completion but immediately returns control to the pro-
gram.

_8158_start_ta_move:

This function causes the axis to accelerate from a starting
velocity (StrVel), rotate at constant velocity (MaxVel), and
decelerates to stop at the specified absolute position with trap-

Function Library 135

ezoidal profile. The acceleration (Tacc) and deceleration (Tdec)
time is specified independently. This command does not let the
program wait for motion completion, but immediately returns
control to the program.

_8158_start_sr_move:

This function causes the axis to accelerate from a starting
velocity (StrVel), rotate at constant velocity (MaxVel), and
decelerates to stop at the relative distance with S-curve profile.
The acceleration (Tacc) and deceleration (Tdec) time is speci-
fied independently. This command does not let the program
wait for motion completion, but immediately returns control to
the program.

_8158_start_sa_move:

This function causes the axis to accelerate from a starting
velocity (StrVel), rotate at constant velocity, and decelerates to
stop at the specified absolute position with S-curve profile. The
acceleration and deceleration time is specified independently.
This command does not let the program wait for motion com-
pletion but immediately returns control to the program.

_8158_set_move_ratio:

This function configures scale factors for the specified axis.
Usually, the axes only need scale factors if their mechanical
resolutions are different. For example, if the resolution of feed-
back sensors is two times resolution of command pulse, then
the parameter “move_ratio” could be set as 2.

_8158_position_override:

This function is used to change target position on the fly. There
are some limitations on this function. Please refer to section
4.2.15 before use it.

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_start_tr_move(I16 AxisNo, F64 Dist, F64

StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _8158_start_ta_move(I16 AxisNo, F64 Pos, F64

StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

136 Function Library

I16 _8158_start_sr_move(I16 AxisNo, F64 Dist, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _8158_start_sa_move(I16 AxisNo, F64 Pos, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _8158_set_move_ratio(I16 AxisNo, F64
move_ratio);

I16 _8158_position_override(I16 AxisNo, F64
NewPos);

Visual Basic6 (Windows 2000/XP)
B_8158_start_tr_move(ByVal AxisNo As Integer,

ByVal Dist As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_ta_move(ByVal AxisNo As Integer,
ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double) As Integer

B_8158_start_sr_move(ByVal AxisNo As Integer,
ByVal Dist As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

B_8158_start_sa_move(ByVal AxisNo As Integer,
ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double, ByVal SVacc As
Double, ByVal SVdec As Double) As Integer

B_8158_set_move_ratio(ByVal AxisNo As Integer,
ByVal move_ratio As Double) As Integer

B_8158_position_override(ByVal AxisNo As Integer,
ByVal NewPos As Double) As Integer

Function Library 137

@ Argument
AxisNo: Axis number designated to move or change position.

Dist: Specified relative distance to move (unit: pulse)

Pos: Specified absolute position to move (unit: pulse)

StrVel: Starting velocity of a velocity profile in units of pulse per
second

MaxVel: Maximum velocity in units of pulse per second

Tacc: Specified acceleration time in units of seconds

Tdec: Specified deceleration time in units of seconds

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve. For more details, see sec-
tion 4.2.4

SVdec: specified velocity interval in which S-curve deceleration is
performed.

Note: SVdec = 0, for pure S-Curve. For more details, see sec-
tion 4.2.4

Move_ratio: ratio of (feedback resolution)/(command resolu-
tion), should not be 0

NewPos: specified new absolute position to move

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

138 Function Library

6.7 Linear Interpolated Motion

@ Name
_8158_start_tr_move_xy – Begin a relative 2-axis linear
interpolation for X & Y axis with trapezoidal profile

_8158_start_ta_move_xy – Begin an absolute 2-axis linear
interpolation for X & Y axis with trapezoidal profile

_8158_start_sr_move_xy – Begin a relative 2-axis linear
interpolation for X & Y axis with S-curve profile

_8158_start_sa_move_xy – Begin an absolute 2-axis linear
interpolation for X & Y axis with S-curve profile

_8158_start_tr_move_zu – Begin a relative 2-axis linear
interpolation for Z & U axis with trapezoidal profile

_8158_start_ta_move_zu – Begin an absolute 2-axis linear
interpolation for Z & U axis with trapezoidal profile

_8158_start_sr_move_zu – Begin a relative 2-axis linear
interpolation for Z & U axis with S-curve profile

_8158_start_sa_move_zu – Begin an absolute 2-axis linear
interpolation for Z & U axis with S-curve profile

_8158_start_tr_move_ab – Begin a relative 2-axis linear
interpolation for A & B axis with trapezoidal profile

_8158_start_ta_move_ab – Begin an absolute 2-axis linear
interpolation for A & B axis with trapezoidal profile

_8158_start_sr_move_ab – Begin a relative 2-axis linear
interpolation for A & B axis with S-curve profile

_8158_start_sa_move_ab – Begin an absolute 2-axis linear
interpolation for A & B axis with S-curve profile

_8158_start_tr_move_cd – Begin a relative 2-axis linear
interpolation for C & D axis with trapezoidal profile

_8158_start_ta_move_cd – Begin an absolute 2-axis linear
interpolation for C & D axis with trapezoidal profile

_8158_start_sr_move_cd – Begin a relative 2-axis linear
interpolation for C & D axis with S-curve profile

Function Library 139

_8158_start_sa_move_cd – Begin an absolute 2-axis linear
interpolation for C & D axis with S-curve profile

_8158_start_tr_line2 – Begin a relative 2-axis linear interpo-
lation for any 2 of 4 axes, with trapezoidal profile

_8158_start_ta_line2 – Begin an absolute 2-axis linear inter-
polation for any 2 of 4 axes, with trapezoidal profile

_8158_start_sr_line2 – Begin a relative 2-axis linear interpo-
lation for any 2 of 4 axes, with S-curve profile

_8158_start_sa_line2 – Begin an absolute 2-axis linear inter-
polation for any 2 of 4 axes, with S-curve profile

_8158_start_tr_line3 – Begin a relative 3-axis linear interpo-
lation for any 3 of 4 axes, with trapezoidal profile

_8158_start_ta_line3 – Begin a absolute 3-axis linear inter-
polation for any 3 of 4 axes, with trapezoidal profile

_8158_start_sr_line3 – Begin a relative 3-axis linear interpo-
lation for any 3 of 4 axes, with S-curve profile

_8158_start_sa_line3 – Begin a absolute 3-axis linear inter-
polation for any 3 of 4 axes, with S-curve profile

_8158_start_tr_line4 – Begin a relative 4-axis linear interpo-
lation for any 4 of 4 axes, with trapezoidal profile

_8158_start_ta_line4 – Begin a absolute 4-axis linear inter-
polation for any 4 of 4 axes, with trapezoidal profile

_8158_start_sr_line4 – Begin a relative 4-axis linear interpo-
lation for any 4 of 4 axes, with S-curve profile

_8158_start_sa_line4 – Begin a absolute 4-axis linear inter-
polation for any 4 of 4 axes, with S-curve profile

@ Description
These functions perform linear interpolation motion with different
profile. Detail Comparisons of those functions are described by fol-
low table.

140 Function Library

Note: The target two axes of linear interpolation are the 2 of former
0-3 axes or later 4-7 axes on a card. It can not cross over
those two groups.

Note: The target 3 axes of linear interpolation are the 3 of former 4
axes or later 4 axes on a card. It can not cross over those two
groups.

Function Total axes Velocity Profile Relative / Absolute Target Axes

_8158_start_tr_move_xy 2 T R Axes 0 & 1

_8158_start_ta_move_xy 2 T A Axes 0 & 1

_8158_start_sr_move_xy 2 S R Axes 0 & 1

_8158_start_sa_move_xy 2 S A Axes 0 & 1

_8158_start_tr_move_zu 2 T R Axes 2 & 3

_8158_start_ta_move_zu 2 T A Axes 2 & 3

_8158_start_sr_move_zu 2 S R Axes 2 & 3

_8158_start_sa_move_zu 2 S A Axes 2 & 3

_8158_start_tr_move_ab 2 T R Axes 4& 5

_8158_start_ta_move_ab 2 T A Axes 4 & 5

_8158_start_sr_move_ab 2 S R Axes 4 & 5

_8158_start_sa_move_ab 2 S A Axes 4 & 5

_8158_start_tr_move_cd 2 T R Axes 6 & 7

_8158_start_ta_move_cd 2 T A Axes 6 & 7

_8158_start_sr_move_cd 2 S R Axes 6 & 7

_8158_start_sa_move_cd 2 S A Axes 6 & 7

Function Total axes Velocity Profile Relative / Absolute Target Axes

_8158_start_tr_line2 2 T R Any 2 of 4 axes

_8158_start_ta_line2 2 T A Any 2 of 4 axes

_8158_start_sr_line2 2 S R Any 2 of 4 axes

_8158_start_sa_line2 2 S A Any 2 of 4 axes

Function Total axes Velocity Profile Relative / Absolute Target Axes

_8158_start_tr_line3 3 T R Any 3 of 4 axes

_8158_start_ta_line3 3 T A Any 3 of 4 axes

_8158_start_sr_line3 3 S R Any 3 of 4 axes

_8158_start_sa_line3 3 S A Any 3 of 4 axes

Function Library 141

Note: The target 4 axes of linear interpolation are the 4 of former 4
axes or later 4 axes on a card. It can not cross over those two
groups.

Velocity profile:
 T: trapezoidal profile

 S: s curve profile

Relative / Absolute:
 R: Relative distance

 A: Absoulte position

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_start_tr_move_xy(I16 Card_id, F64

DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec);

I16 _8158_start_ta_move_xy(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8158_start_sr_move_xy(I16 Card_id, F64
DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_sa_move_xy(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_tr_move_zu(I16 Card_id, F64
DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec);

I16 _8158_start_ta_move_zu(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

Function Total axes Velocity Profile Relative / Absolute Target Axes

_8158_start_tr_line4 4 T R Any 4 of 4 axes

_8158_start_ta_line4 4 T A Any 4of 4 axes

_8158_start_sr_line4 4 S R Any 4 of 4 axes

_8158_start_sa_line4 4 S A Any 4 of 4 axes

142 Function Library

I16 _8158_start_sr_move_zu(I16 Card_id, F64
DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_sa_move_zu(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_tr_move_ab(I16 Card_id, F64
DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec);

I16 _8158_start_ta_move_ab(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8158_start_sr_move_ab(I16 Card_id, F64
DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_sa_move_ab(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_tr_move_cd(I16 Card_id, F64
DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec);

I16 _8158_start_ta_move_cd(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8158_start_sr_move_cd(I16 Card_id, F64
DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_sa_move_cd(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_tr_line2(I16 *AxisArray, F64
*DistArray, F64 StrVel, F64 MaxVel, F64
Tacc, F64 Tdec);

I16 _8158_start_ta_line2(I16 *AxisArray, F64
*PosArray, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8158_start_sr_line2(I16 *AxisArray, F64
*DistArray, F64 StrVel, F64 MaxVel, F64
Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_sa_line2(I16 *AxisArray, F64
*PosArray, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

Function Library 143

I16 _8158_start_tr_line3(I16 *AxisArray, F64
*DistArray, F64 StrVel, F64 MaxVel, F64
Tacc, F64 Tdec);

I16 _8158_start_ta_line3(I16 *AxisArray, F64
*PosArray, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8158_start_sr_line3(I16 *AxisArray, F64
*DistArray, F64 StrVel, F64 MaxVel, F64
Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_sa_line3(I16 *AxisArray, F64
*PosArray, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_tr_line4(I16 *AxisArray, F64
*DistArray, F64 StrVel, F64 MaxVel, F64
Tacc, F64 Tdec);

I16 _8158_start_ta_line4(I16 *AxisArray, F64
*PosArray, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8158_start_sr_line4(I16 *AxisArray, F64
*DistArray, F64 StrVel, F64 MaxVel, F64
Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8158_start_sa_line4(I16 *AxisArray, F64
*PosArray, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

Visual Basic6 (Windows 2000/XP)
B_8158_start_tr_move_xy(ByVal Card_id As Integer,

ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double) As Integer

B_8158_start_ta_move_xy(ByVal Card_id As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8158_start_sr_move_xy(ByVal Card_id As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

144 Function Library

B_8158_start_sa_move_xy(ByVal Card_id As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8158_start_tr_move_zu(ByVal Card_id As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double);

B_8158_start_ta_move_zu(ByVal Card_id As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8158_start_sr_move_zu(ByVal Card_id As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

B_8158_start_sa_move_zu(ByVal Card_id As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8158_start_tr_move_ab(ByVal Card_id As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double);

B_8158_start_ta_move_ab(ByVal Card_id As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8158_start_sr_move_ab(ByVal Card_id As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec

Function Library 145

As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

B_8158_start_sa_move_ab(ByVal Card_id As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8158_start_tr_move_cd(ByVal Card_id As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double);

B_8158_start_ta_move_cd(ByVal Card_id As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8158_start_sr_move_cd(ByVal Card_id As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

B_8158_start_sa_move_cd(ByVal Card_id As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8158_start_tr_line2(AxisArray() As Integer,
DistArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_ta_line2(AxisArray() As Integer,
PosArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_sr_line2((AxisArray() As Integer,
DistArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

146 Function Library

B_8158_start_sa_line2(AxisArray() As Integer,
PosArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

B_8158_start_tr_line3(AxisArray() As Integer,
DistArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_ta_line3(AxisArray() As Integer,
PosArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_sr_line3((AxisArray() As Integer,
DistArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

B_8158_start_sa_line3(AxisArray() As Integer,
PosArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

B_8158_start_tr_line4(AxisArray() As Integer,
DistArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_ta_line4(AxisArray() As Integer,
PosArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_sr_line4((AxisArray() As Integer,
DistArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

B_8158_start_sa_line4(AxisArray() As Integer,
PosArray() As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

Function Library 147

@ Argument
card_id: Specify the PCI-8158 card index. The card_id could be
decided by DIP switch (SW1) or depend on slot sequence. Please
refer to _8158_initial().

AxisNo: Axis number designated to move or change position.

DistX: specified relative distance of axis 0 to move (unit: pulse).

DistY: specified relative distance of axis 1 to move (unit: pulse).

PosX: specified absolute position of axis 0 to move (unit: pulse).

PosY: specified absolute position of axis 1 to move (unit: pulse).

StrVel: Starting velocity of a velocity profile in units of pulse per
second.

MaxVel: Maximum velocity in units of pulse per second.

Tacc: Specified acceleration time in units of seconds.

Tdec: Specified deceleration time in units of seconds.

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve. For more details, see sec-
tion 4.2.4

SVdec: specified velocity interval in which S-curve deceleration is
performed.

Note: SVdec = 0, for pure S-Curve. For more details, see sec-
tion 4.2.4

*AxisArray: Array of axis number to perform interpolation.

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

148 Function Library

Example: I16 AxisArray[2] = {0, 3}; //axis 0, & axis 3 (correct)

I16 AxisArray[3] = {0,2, 3}; //axis 0, 2 & 3 (correct)

I16 AxisArray[2] = {1, 6}; //axis 1, & axis 6 (incorrect)

*DistArray: Array of relative distance for linear interpolation.

Example: I16 AxisArray[2] = {0, 3}; //axis 0, & axis 3

F64 DistArray[2] = {1000.0, 2000.0} //for axis 0 & 3

*PosArray: Array of absolute position for linear interpolation.

Example: I16 AxisArray[3] = {0,2, 3}; //axis 0, 2 & 3

F64 PosArray[3] = {200.0, 300.0, 400.0} //absolute position
for axis 0, 2 & 3

Function Library 149

6.8 Circular Interpolation Motion

@ Name
_8158_start_tr_arc_xy – Begin a T-curve relative circular
interpolation for X & Y axis

_8158_start_ta_arc_xy – Begin a T-curve absolute circular
interpolation for X & Y axis

_8158_start_sr_arc_xy – Begin a S-curve relative circular
interpolation for X & Y axis

_8158_start_sa_arc_xy –Begin a S-curve absolute circular
interpolation for X & Y axis

_8158_start_tr_arc_zu – Begin a T-curve relative circular
interpolation for Z & U axis

_8158_start_ta_arc_zu – Begin a T-curve absolute circular
interpolation for Z & U axis

_8158_start_sr_arc_zu – Begin a S-curve relative circular
interpolation for Z & U axis

_8158_start_sa_arc_zu –Begin a S-curve absolute circular
interpolation for Z & U axis

_8158_start_tr_arc_ab – Begin a T-curve relative circular
interpolation for A & B axis

_8158_start_ta_arc_ab – Begin a T-curve absolute circular
interpolation for A & B axis

_8158_start_sr_arc_b – Begin a S-curve relative circular
interpolation for A & B axis

_8158_start_sa_arc_ab –Begin a S-curve absolute circular
interpolation for A & B axis

_8158_start_tr_arc_cd – Begin a T-curve relative circular
interpolation for C & D axis

_8158_start_ta_arc_cd – Begin a T-curve absolute circular
interpolation for C & D axis

_8158_start_sr_arc_cd – Begin a S-curve relative circular
interpolation for C & D axis

150 Function Library

_8158_start_sa_arc_cd –Begin a S-curve absolute circular
interpolation for C & D axis

_8158_start_tr_arc2 – Begin a T-curve relative circular inter-
polation for any 2 of 4 axes

_8158_start_ta_arc2 – Begin a T-curve absolute circular
interpolation for any 2 of 4 axes

_8158_start_sr_arc2 – Begin a S-curve relative circular inter-
polation for any 2 of 4 axes

_8158_start_sa_arc2 – Begin a S-curve absolute circular
interpolation for any 2 of 4 axes

@ Description
Those functions perform Circular interpolation motion with differ-
ent profile. Detail Comparisons of those functions are described by
follow table.

Function Total axes Velocity Profile Relative / Absolute Target Axes

_8158_start_tr_arc_xy 2 trapezoidal R Axes 0 & 1

_8158_start_ta_arc_xy 2 trapezoidal A Axes 0 & 1

_8158_start_sr_arc_xy 2 S-curve R Axes 0 & 1

_8158_start_sa_arc_xy 2 S-curve A Axes 0 & 1

_8158_start_tr_arc_zu 2 trapezoidal R Axes 2 & 3

_8158_start_ta_arc_zu 2 trapezoidal A Axes 2 & 3

_8158_start_sr_arc_zu 2 S-curve R Axes 2 & 3

_8158_start_sa_arc_zu 2 S-curve A Axes 2 & 3

_8158_start_tr_arc_ab 2 trapezoidal R Axes 4 & 5

_8158_start_ta_arc_ab 2 trapezoidal A Axes 4 & 5

_8158_start_sr_arc_ab 2 S-curve R Axes 4 & 5

_8158_start_sa_arc_ab 2 S-curve A Axes 4 & 5

_8158_start_tr_arc_cd 2 trapezoidal R Axes 6 & 7

_8158_start_ta_arc_cd 2 trapezoidal A Axes 6 & 7

_8158_start_sr_arc_cd 2 S-curve R Axes 6 & 7

_8158_start_sa_arc_cd 2 S-curve A Axes 6 & 7

Function Library 151

Note: The target two axes of linear interpolation are the 2 of former
4 axes (0-3) or later 4 axes (4-7) on a card. It can not cross
over those two groups.

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_start_tr_arc_xy(I16 card_id, F64

OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 CW_CCW, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec);

I16 _8158_start_ta_arc_xy(I16 card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 CW_CCW, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _8158_start_sr_arc_xy(I16 card_id, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 CW_CCW, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec,F64 SVacc,F64
SVdec);

I16 _8158_start_sa_arc_xy(I16 card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 CW_CCW, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

I16 _8158_start_tr_arc_zu(I16 card_id, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 CW_CCW, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec);

I16 _8158_start_ta_arc_zu(I16 card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 CW_CCW, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _8158_start_sr_arc_zu(I16 card_id, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 CW_CCW, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec,F64 SVacc,F64
SVdec);

Function Total axes Velocity Profile Relative / Absolute Target Axes

_8158_start_tr_arc2 2 trapezoidal R Any 2 of 4 Axis

_8158_start_ta_arc2 2 trapezoidal A Any 2 of 4 Axis

_8158_start_sr_arc2 2 S-curve R Any 2 of 4 Axis

_8158_start_sa_arc2 2 S-curve A Any 2 of 4 Axis

152 Function Library

I16 _8158_start_sa_arc_zu(I16 card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 CW_CCW, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

I16 _8158_start_tr_arc_ab(I16 card_id, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 CW_CCW, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec);

I16 _8158_start_ta_arc_ab(I16 card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 CW_CCW, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _8158_start_sr_arc_ab(I16 card_id, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 CW_CCW, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec,F64 SVacc,F64
SVdec);

I16 _8158_start_sa_arc_ab(I16 card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 CW_CCW, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

I16 _8158_start_tr_arc_cd(I16 card_id, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 CW_CCW, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec);

I16 _8158_start_ta_arc_cd(I16 card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 CW_CCW, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _8158_start_sr_arc_cd(I16 card_id, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 CW_CCW, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec,F64 SVacc,F64
SVdec);

I16 _8158_start_sa_arc_cd(I16 card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 CW_CCW, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

I16 _8158_start_tr_arc2(I16 *AxisArray, F64
*OffsetCenter, F64 *OffsetEnd, I16 CW_CCW,
F64 StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _8158_start_ta_arc2(I16 *AxisArray, F64
*CenterPos, F64 *EndPos, I16 CW_CCW, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

Function Library 153

I16 _8158_start_sr_arc2(I16 *AxisArray, F64
*OffsetCenter, F64 *OffsetEnd, I16 CW_CCW,
F64 StrVel,F64 MaxVel,F64 Tacc,F64 Tdec, F64
SVacc,F64 SVdec);

I16 _8158_start_sa_arc2(I16 *AxisArray, F64
*CenterPos, F64 *EndPos, I16 CW_CCW, F64
StrVel,F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

Visual Basic6 (Windows 2000/XP)
B_8158_start_tr_arc_xy(ByVal card_id As Integer,

ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double);

B_8158_start_ta_arc_xy(ByVal card_id As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_sr_arc_xy(ByVal card_id As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal Svacc As Double, ByVal Svdec
As Double) As Integer

B_8158_start_sa_arc_xy(ByVal card_id As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

B_8158_start_tr_arc_zu(ByVal card_id As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As

154 Function Library

Double, ByVal Tacc As Double, ByVal Tdec As
Double);

B_8158_start_ta_arc_zu(ByVal card_id As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_sr_arc_zu(ByVal card_id As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal Svacc As Double, ByVal Svdec
As Double) As Integer

B_8158_start_sa_arc_zu(ByVal card_id As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

B_8158_start_tr_arc_ab(ByVal card_id As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double);

B_8158_start_ta_arc_ab(ByVal card_id As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_sr_arc_ab(ByVal card_id As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As

Function Library 155

Double, ByVal Svacc As Double, ByVal Svdec
As Double) As Integer

B_8158_start_sa_arc_ab(ByVal card_id As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

B_8158_start_tr_arc_cd(ByVal card_id As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double);

B_8158_start_ta_arc_cd(ByVal card_id As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_sr_arc_cd(ByVal card_id As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal Svacc As Double, ByVal Svdec
As Double) As Integer

B_8158_start_sa_arc_cd(ByVal card_id As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

B_8158_start_tr_arc2(AxisArray() As Integer,
OffsetCenter() As Double, OffsetEnd() As
Double, Byval CW_CCW As Integer, ByVal
StrVel As Double , ByVal MaxVel As Double,
ByVal Tacc As Double, ByVal Tdec As Double)
As Integer

156 Function Library

B_8158_start_ta_arc2(AxisArray() As Integer,
CenterPos() As Double, EndPos() As Double,
Byval CW_CCW As Integer, ByVal StrVel As
Double , ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8158_start_sr_arc2(AxisArray() As Integer,
OffsetCenter() As Double, OffsetEnd() As
Double, Byval CW_CCW As Integer, ByVal
StrVel As Double , ByVal MaxVel As Double,
ByVal Tacc As Double, ByVal Tdec As Double,
ByVal Svacc As Double, ByVal Svdec As
Double) As Integer

B_8158_start_sa_arc2(AxisArray() As Integer,
CenterPos() As Double, EndPos() As Double,
Byval CW_CCW As Integer, ByVal StrVel As
Double , ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal Svacc
As Double, ByVal Svdec As Double) As Integer

@ Argument
card_id: Specify the PCI-8158 card index. The card_id could be
decided by DIP switch (SW1) or depend on slot sequence. Please
refer to _8158_initial().

AxisNo: Axis number designated to move or change position.

OffsetCx: X-axis (first axis of target axes) offset to center

OffsetCy: Y-axis (second axis of target axes) offset to center

OffsetEx: X-axis (first axis of target axes) offset to end of arc

OffsetEy: Y-axis offset to end of arc

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Function Library 157

Cx : X-axis (first axis of target axes) absolute position of center of
arc

Cy: Y-axis (second axis of target axes) absolute position of center
of arc

Ex: X-axis (first axis of target axes) absolute position of end of arc

Ey: Y-axis (second axis of target axes) absolute position of end of
arc

CW_CCW: Specified direction of arc

StrVel: Starting velocity of a velocity profile in units of pulse per
second.

MaxVel: Maximum velocity in units of pulse per second.

Tacc: Specified acceleration time in units of seconds.

Tdec: Specified deceleration time in units of seconds.

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve. For more details, see sec-
tion 4.2.4

SVdec: specified velocity interval in which S-curve deceleration is
performed.

Note: SVdec = 0, for pure S-Curve. For more details, see sec-
tion 4.2.4

*AxisArray: Array of axis number to perform interpolation.

Example: I16 AxisArray[2] = {0, 3}; //axis 0, & axis 3 (correct)

I16 AxisArray[2] = {1, 6}; //axis 1, & axis 6 (incorrect)

*OffsetCenter: Array of the offset to center (relative to the start
position)

Example: F64 OffsetCenter[2] = {2000.0, 0.0}; //offset from
start position(initial point) for 1st & 2nd axes

Value Meaning

0 Clockwise(cw)
1 Counterclockwise(ccw)

158 Function Library

*OffsetEnd: Array of the offset to end of arc (relative to the start
position)

Example: F64 OffsetEnd[2] = {4000.0, 0.0}; //offset from start
position(initial point for 1st & 2nd axes

*CenterPos: Array of the center of arc absolute position

Example: F64 CenterPos[2] = {2000.0, 0.0}; //absolute center
position for 1st & 2nd axes

*EndPos: Array of the end point of arc absolute position

Example: F64 EndPos[2] = {4000.0, 0.0}; //absolute end posi-
tion for 1st & 2nd axes

Function Library 159

6.9 Home Return Mode

@ Name
_8158_set_home_config – Set the configuration for home
return move motion

_8158_home_move – Perform a home return move.

_8158_home_search –Perform an auto search home

@ Description
_8158_set_home_config:

Configures the home return mode, origin(ORG) and index sig-
nal(EZ) logic, EZ count, and ERC output options for the
home_move() function. Refer to section 4.2.10 for the setting
of home_mode control.

_8158_home_move:

This function will cause the axis to perform a home return move
according to the _8164_set_home_config() function settings.
The direction of movement is determined by the sign of velocity
parameter (MaxVel). Since the stopping condition of this func-
tion is determined by the home_mode setting, users should
take care in selecting the initial moving direction. Users should
also take care to handle conditions when the limit switch is
touched or other conditions that are possible causing the axis
to stop. For more detail description, see section 4.2.10

_8158_home_search:

This function will cause the axis to perform a home-search
move according to the _8164_set_home_config() function set-
tings. The direction of movement is determined by the sign of
velocity parameter (MaxVel). Since the stopping condition of
this function is determined by the home_mode setting, users
should take care in selecting the initial moving direction. Users
should also take care to handle conditions when the limit switch
is touched or other conditions that are possible causing the
axis to stop. For more detail description, see section 4.2.11

160 Function Library

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_set_home_config(I16 AxisNo, I16

home_mode, I16 org_logic, I16 ez_logic, I16
ez_count, I16 erc_out);

I16 _8158_home_move(I16 AxisNo, F64 StrVel, F64
MaxVel, F64 Tacc);

I16 _8158_home_search(I16 AxisNo, F64 StrVel, F64
MaxVel, F64 Tacc, F64 ORGOffset);

Visual Basic (Windows 2000/XP)
B_8158_set_home_config(ByVal AxisNo As Integer,

ByVal home_mode As Integer, ByVal org_logic
As Integer, ByVal ez_logic As Integer, ByVal
ez_count As Integer, ByVal erc_out As
Integer) As Integer

B_8158_home_move(ByVal AxisNo As Integer, ByVal
StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double) As Integer

B_8158_home_search(ByVal AxisNo As Integer, ByVal
StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double, ByVal ORGOffset As
Double) As Integer

@ Argument
AxisNo: Axis number designated to move or change position.

home_mode: Stopping modes for home return, This value is
between 0 to 12. Please see Section 4.2.10

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Function Library 161

org_logic: Action logic configuration for ORG

ez_logic: Action logic configuration for EZ

ez_count: 0-15 (Please refer to see Section 4.2.10)

erc_out: Set ERC output options.

StrVel: Starting velocity of a velocity profile. (unit: pulse/sec)

MaxVel: Maximum velocity. (unit: pulse/sec)

Tacc: Specified acceleration time (Unit: sec)

ORGOffset: The escape pulse amounts when home search
touches the ORG singal (Unit: pulse)

Value Meaning

0 Active low
1 Active high

Value Meaning

0 Active low
1 Active high

Value Meaning

0 no ERC out
1 ERC signal out when home-move finishing

162 Function Library

6.10 Manual Pulser Motion

@ Name
_8158_disable_pulser_input – Disable the pulse input

_8158_pulser_pmove – Manual pulse p_move

_8158_pulser_vmove – Manual pulse v_move

_8158_set_pulser_ratio – Set manual pulse ratio for actual
output pulse rate

_8158_set_pulser_iptmode – Set the input signal modes of
pulse

@ Description
_8158_disable_pulser_input

This function is used to set the pulse input disable or enable.

_8158_pulser_pmove

With this command, the axis begins to move according to the
manual pulse input. The axis will output one pulse when it
receives one manual pulse, until the
_8158_disable_pulser_input function disables the pulse or the
output pulse number reaches the distance.

_8158_pulser_vmove

With this command, the axis begins to move according to the
manual pulse input. The axis will output one pulse when it
receives one manual pulse, until the
_8158_disable_pulser_input function disables the pulse.

_8158_set_pulser_ratio

Set manual pulse ratio for actual output pulse rate. The formula
for manual pulse output rate is:

Output Pulse Count = Input Pulse Count × 4 (MultiF +1) ×(Di-
vF +1) / 2048
The DivF = 0~2047 Divide Factor
The MultiF= 0~31 Multiplication Factor

Function Library 163

_8158_set_pulser_iptmode

This function is used to configure the input mode of manual
pulse.

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_disable_pulser_input(I16 AxisNo, U16

Disable);
I16 _8158_pulser_pmove(I16 AxisNo, F64 Dist, F64

SpeedLimit);
I16 _8158_pulser_vmove(I16 AxisNo, F64

SpeedLimit);
I16 _8158_set_pulser_ratio(I16 AxisNo, I16 DivF,

I16 MultiF);
I16 _8158_set_pulser_iptmode(I16 AxisNo, I16

InputMode, I16 Inverse);

Visual Basic (Windows 2000/XP)
B_8158_disable_pulser_input(ByVal AxisNo As

Integer, ByVal Disable As Integer) As
Integer

B_8158_pulser_pmove(ByVal AxisNo As Integer,
ByVal Dist As Double, ByVal SpeedLimit As
Double) As Integer

B_8158_pulser_vmove(ByVal AxisNo As Integer,
ByVal SpeedLimit As Double) As Integer

B_8158_set_pulser_ratio(ByVal AxisNo As Integer,
ByVal DivF As Integer, ByVal MultiF As
Integer) As Integer

B_8158_set_pulser_iptmode(ByVal AxisNo As
Integer, ByVal InputMode As Integer, ByVal
Inverse As Integer) As Integer

164 Function Library

@ Argument
AxisNo: Axis number designated to move or change position.

Disable: Disable pulse input.

Disable = 1, disable pulse

Disable = 0, enable pulse

Dist: Specified relative distance to move (unit: pulse)

For example, if SpeedLimit is set to be 100pps, then the axis
can move at fastest 100pps , even the input pulse signal rate is
more then 100pps.

DivF: Divide factor (0-2047)

MultiF: Multiplication factor (0-31)

InputMode: Setting of manual pulse input mode from the PA and
PB pins

Inverse: Reverse the moving direction from pulse direction

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Value Meaning

0 1X AB phase type pulse input
1 2X AB phase type pulse input
2 4X AB phase type pulse input
3 CW/CCW type pulse input

Value Meaning

0 no inverse
1 Reverse moving direction

Function Library 165

6.11 Motion Status

@ Name
_8102_motion_done – Return the motion status

@ Description
_8102_motion_done:

Return the motion status of the 8102. The return code show as
below:

0 Normal stopped condition
1 Waiting for DR
2 Waiting for CSTA input
3 Waiting for an internal synchronous signal
4 Waiting for another axis to stop
5 Waiting for a completion of ERC timer
6 Waiting for a completion of direction change timer
7 Correcting backlash
8 Wait PA/PB
9 At FA speed

10 At FL Speed
11 Accelerating
12 At FH Speed
13 Decelerating
14 Wait INP
15 Others(Controlling Start)
16 SALM
17 SPEL
18 SMEL
19 SEMG
20 SSTP
21 SERC

166 Function Library

@ Syntax

C/C++(Windows 2000/XP)
I16 _8102_motion_done(I16 AxisNo)

Visual Basic (Windows 2000/XP)
B_8102_motion_done(ByVal AxisNo As Integer) As

Integer

@ Argument
AxisNo: Axis number designated to move or change position.

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Function Library 167

6.12 Motion Interface I/O

@ Name
_8158_set_servo – Set the ON-OFF state of the SVON signal

_8158_set_pcs_logic – Set the logic of PCS signal

_8158_set_pcs – Enable the PCS for position override

_8158_set_clr_mode – Set the mode of CLR signal

_8158_set_inp – Set the logic of INP signal and operating
mode

_8158_set_alm – Set the logic of ALM signal and operating
mode

_8158_set_erc – Set the logic of ERC signal and operating
mode

_8158_set_erc_out – Output an ERC signal

_8158_clr_erc – Clear the ERC signal

_8158_set_sd – Set the logic SD signal and operating mode

_8158_enable_sd – Enable SD signal

_8158_set_limit_logic – Set the logic of PEL/MEL signal

_8158_set_limit_mode – Set PEL/MEL operating mode

_8158_get_io_status –Get all the motion I/O statuses of each
8158

@ Description
_8158_set_servo:

You can set the ON-OFF state of the SVON signal with this
function. The default value is 1(OFF), which means the SVON
is open to GND.

_8158_set_pcs_logic:

Set the active logic of the PCS signal input

_8158_set_pcs:

168 Function Library

Enable the position override when input signal PCS is turn ON.
The PCS terminal status can be monitored by
“_8158_get_io_status” function.

_8158_set_clr_mode

CLR inputted signal can reset specified counters(command,
position, error and general purpose counter). The reset action
could be set by this function. The reset action mode has 4
types. For details refer to arguments description.

_8158_set_inp:

Set the active logic of the In-Position signal input from the
servo driver. Users can select whether they want to enable this
function. It is disabled by default.

_8158_set_alm:

Set the active logic of the ALARM signal input from the servo
driver. Two reacting modes are available when the ALARM sig-
nal is active.

_8158_set_erc:

Users can set the logic and on time of the ERC with this func-
tion. It also can set the pulse width of ERC signal.

_8158_set_erc_out:

This function is used to output the ERC signal manually.

_8158_clr_erc:

This function is used to reset the output when the ERC signal
output is specified to a level type output.

_8158_set_sd:

Set the active logic, latch control, and operating mode of the
SD signal input from a mechanical system. Users can select
whether they want to enable this function by _8158_enable_sd.
It is disabled by default

_8158_enable_sd:

Enable the SD signal input. Default setting is default.

_8158_set_limit_logic:

Function Library 169

Set the EL logic, normal open or normal closed.

_8158_set_limit_mode:

Set the reacting modes of the EL signal.

_8158_get_io_status:

Get all the I/O statuses for each axis. The definition for each bit
is as follows:

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_set_servo(I16 AxisNo, I16 on_off);
I16 _8158_set_pcs_logic(I16 AxisNo, I16

pcs_logic);
I16 _8158_set_pcs(I16 AxisNo, I16 enable);
I16 _8158_set_clr_mode(I16 AxisNo, I16 clr_mode,

I16 targetCounterInBit);
I16 _8158_set_inp(I16 AxisNo, I16 inp_enable, I16

inp_logic);

Bit Name Description

0 RDY RDY pin input
1 ALM Alarm Signal
2 +EL Positive Limit Switch
3 -EL Negative Limit Switch
4 ORG Origin Switch
5 DIR DIR output
6 EMG EMG status
7 PCS PCS signal input
8 ERC ERC pin output
9 EZ Index signal

10 CLR Clear signal
11 LTC Latch signal input
12 SD Slow Down signal input
13 INP In-Position signal input
14 SVON Servo-ON output status

170 Function Library

I16 _8158_set_alm(I16 AxisNo, I16 alm_logic, I16
alm_mode);

I16 _8158_set_erc(I16 AxisNo, I16 erc_logic, I16
erc_pulse_width, I16 erc_mode);

I16 _8158_set_erc_out(I16 AxisNo);
I16 _8158_clr_erc(I16 AxisNo);
I16 _8158_set_sd(I16 AxisNo, I16 sd_logic, I16

sd_latch, I16 sd_mode);
I16 _8158_enable_sd(I16 AxisNo, I16 enable);
I16 _8158_set_limit_logic(I16 AxisNo, U16 Logic

);
I16 _8158_set_limit_mode(I16 AxisNo, I16

limit_mode);
I16 _8158_get_io_status(I16 AxisNo, U16 *io_sts);

Visual Basic (Windows 2000/XP)
B_8158_set_servo(ByVal AxisNo As Integer, ByVal

on_off As Integer) As Integer
B_8158_set_pcs_logic(ByVal AxisNo As Integer,

ByVal pcs_logic As Integer) As Integer
B_8158_set_pcs(ByVal AxisNo As Integer, ByVal

enable As Integer)As Integer
B_8158_set_clr_mode(ByVal AxisNo As Integer,

ByVal clr_mode As Integer, ByBal
targetCounterInBit as Integer) As Integer

B_8158_set_inp(ByVal AxisNo As Integer, ByVal
inp_enable As Integer, ByVal inp_logic As
Integer) As Integer

B_8158_set_alm(ByVal AxisNo As Integer, ByVal
alm_logic As Integer, ByVal alm_mode As
Integer) As Integer

B_8158_set_erc(ByVal AxisNo As Integer, ByVal
erc_logic As Integer, ByVal erc_pulse_width
As Integer, ByVal erc_mode As Integer) As
Integer

B_8158_set_erc_out(ByVal AxisNo As Integer) As
Integer

B_8158_clr_erc(ByVal AxisNo As Integer) As
Integer

B_8158_set_sd(ByVal AxisNo As Integer, ByVal
sd_logic As Integer, ByVal sd_latch As
Integer, ByVal sd_mode As Integer) As
Integer

Function Library 171

B_8158_enable_sd(ByVal AxisNo As Integer, ByVal
Enable As Integer) As Integer

B_8158_set_limit_logic(ByVal AxisNo As Integer,
ByVal Logic As Integer) As Integer

B_8158_set_limit_mode(ByVal AxisNo As Integer,
ByVal limit_mode As Integer) As Integer

I16 _8158_get_io_status(ByVal AxisNo As Integer,
io_sts As Integer) As Integer

@ Argument
AxisNo: Axis number of Target Axis.

on_off: ON-OFF state of SVON signal

pcs_logic: PCS signal input logic

enable: enable or disable

clr_mode: Specify a CLR input clear mode

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Value Meaning

0 ON
1 OFF

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 Disable
1 Enable

172 Function Library

clr_mode = 0 , Clear on the falling edge (default)

clr_mode = 1 , Clear on the rising edge

clr_mode = 2 , Clear on a LOW level

clr_mode = 3 , Clear on a HIGH level

targetCounterInBit: Enable/Disable clear target counter in bit

inp_enable: INP function enabled/disabled

inp_enable = 0, Disabled (default)

inp_enable = 1, Enabled

inp_logic: Set the active logic for the INP signal

alm_logic: Setting of active logic for ALARM signals

alm_mode: Reacting modes when receiving an ALARM signal.

Value Meaning

Bit Description
0 Reset command counter when CLR input turns ON
1 Reset position counter when CLR input turns ON
2 Reset error counter when CLR input turns ON
3 Reset general purpose counter when CLR input turns ON

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 motor immediately stops (default)
1 motor decelerates then stops

Function Library 173

erc_logic: Set the active logic for the ERC signal

erc_pulse_width: Set the pulse width of the ERC signal

erc_mode:

sd_logic:

sd_latch: Set the latch control for the SD signal

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 12 µs

1 102 µs

2 409 µs
3 1.6 ms
4 13 ms
5 52 ms
6 104 ms
7 Level output

Value Meaning

0 Disable
1 Output ERC when stopped by EL, ALM, or EMG input
2 Output ERC when complete home return
3 Both 1 and 2

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 Do not latch
1 latch

174 Function Library

sd_mode: Set the reacting mode of the SD signal

enable: Set the ramping-down point for high speed feed.

Logic: Set the PEL/MEL logic.

limit_mode:

*io_sts: I/O status. Please refer to 6.12 function description.

Value Meaning

0 slow down only
1 slow down then stop

Value Meaning

0 Automatic setting
1 Manual setting (default)

Value Meaning

0 Normal low(normal open)
1 Normal high(normal close)

Value Meaning

0 Stop immediately
1 Slow down then stop

Function Library 175

6.13 Interrupt Control

@Name
_8158_int_control – Enable/Disable INT service

_8158_set_motion_int_factor – Set the factors of motion
related interrupts

_8158_wait_error_interrupt – Wait error related interrupts

_8158_wait_motion_interrupt – Wait motion related inter-
rupts

@ Description
_8158_int_control:

This function is used to enable the Windows interrupt event to
host PC.

_8158_set_motion_int_factor:

This function allows users to select motion related factors to ini-
tiate the event int. The error can never be masked once the
interrupt service is turned on by _8158_int_control(). Once the
Interrupt function is enabled, you can use
_8158_wait_motion_interrupt() to wait event.

_8158_wait_error_interrupt:

When user enabled the Interrupt function by
_8158_int_control(). He could use this function to wait the error
interrupts. Please refer to the operation theory section 4.8

_8158_wait_motion_interrupt:

When user enabled the Interrupt function by
_8158_int_control() and set the interrupt factors by
_8158_set_motion_int_factor(). User could use this function to
wait the specific interrupt. When this function was running, the
process would never stop until evens were triggered or the
function was time out.

176 Function Library

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_int_control(I16 card_id, I16 intFlag);
I16 _8158_set_motion_int_factor(I16 AxisNo, U32

int_factor);
I16 _8158_wait_error_interrupt(I16 AxisNo, I32

TimeOut_ms);
I16 _8158_wait_motion_interrupt(I16 AxisNo, I16

IntFactorBitNo, I32 TimeOut_ms);

Visual Basic (Windows 2000/XP)
B_8158_int_control(ByVal card_id As Integer,

ByVal intFlag As Integer) As Integer
B_8158_wait_error_interrupt(ByVal AxisNo As

Integer, ByVal TimeOut_ms As Long) As
Integer

B_8158_wait_motion_interrupt(ByVal AxisNo As
Integer, ByVal IntFactorBitNo As Integer,
ByVal TimeOut_ms As Long) As Integer

B_8158_set_motion_int_factor(ByVal AxisNo As
Integer, ByVal int_factor As Long) As
Integer

@ Argument
card_id: Specify the index of target PCI-8158 card. The card_id
could be decided by DIP switch (SW1) or depend on slot
sequence. Please refer to _8158_initial().

intFlag: Enable/Disable the Interrupt function

Value Meaning

0 Disable
1 Enable

Function Library 177

AxisNo: Axis number of Target Axis.

int_factor: interrupt factor

motion INT factors

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Value Meaning (0: Disable, 1:Enable)
Bit Description
0 Normal stop
1 Next command in buffer starts
2 Command pre-register 2 is empty and allow new command to write
3 (Reserved) (Always set to 0)
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 +Soft limit or comparator 1 is ON
9 -Soft limit or comparator 2 is ON

10 Error comparator or comparator 3 is ON
11 General comparator or comparator 4 is ON
12 Trigger comparator or comparator 5 is ON
13 Counter is reset by CLR input
14 Counter is latched by LTC input
15 Counter is latched by ORG Input
16 SD input turns on
17 (Reserved) (Always set to 0)
18 CSTA input or _8158_start_move_all() turns on

19~31 Not define (Always set to 0)

178 Function Library

TimeOut_ms: Specifies the time-out interval, in milliseconds. If
TimeOut_ms is zero, the function tests the states of the specified
objects and returns immediately. If TimeOut_ms is -1, the func-
tion's time-out interval never elapses (infinate).

IntFactorBitNo: Specifies the bit number of the INT factor.

e.g. IntFactorBitNo = 4, It means waiting the factor of “Acceler-
ation Start” interrupt.

Function Library 179

6.14 Position Control and Counters

@ Name
_8158_get_position – Get the value of feedback position
counter

_8158_set_position – Set the feedback position counter

_8158_get_command – Get the value of command position
counter

_8158_set_command – Set the command position counter

_8158_get_error_counter – Get the value of position error
counter

_8158_reset_error_counter – Reset the position error
counter

_8158_get_general_counter – get the value of general
counter

_8158_set_general_counter – Set the general counter

_8158_get_target_pos – Get the value of target position
recorder

_8158_reset_target_pos – Reset target position recorder

_8158_get_res_distance – Get remaining pulses accumu-
lated from motions

_8158_set_res_distance – Set remaining pulses record

@ Description
_8158_get_position:

This function is used to read the feedback position counter
value. Note that this value has already been processed by the
move ratio setting by _8158_set_move_ratio(). If the move
ratio is 0.5, than the value of position will be twice. The source
of the feedback counter is selectable by the function
_8158_set_feedback_src() to be external EA/EB or internal
pulse output of 8158 .

_8158_set_position:

180 Function Library

This function is used to change the feedback position counter
to the specified value. Note that the value to be set will be pro-
cessed by the move ratio. If move ratio is 0.5, then the set
value will be twice as given value.

_8158_get_command:

This function is used to read the value of the command position
counter. The source of the command position counter is the pulse
output of the 8158.

_8158_set_command:

This function is used to change the value of the command posi-
tion counter.

_8158_get_error_counter:

This function is used to read the value of the position error
counter.

_8158_reset_error_counter:

This function is used to clear the position error counter.

_8158_get_general_counter:

This function is used to read the value of the general counter.

_8158_set_general_counter:

This function is used to set the counting source of and change
the value of general counter (By default, the source is pulse
input).

_8158_get_target_pos:

This function is used to read the value of the target position
recorder. The target position recorder is maintained by the
8158 software driver. It records the position to settle down for
current running motion.

_8158_reset_target_pos:

This function is used to set new value for the target position
recorder. It is necessary to call this function when home return
completes, or when a new feedback counter value is set by
function _8158_set_position().

Function Library 181

_8158_get_res_distance:

This function is used to read the value of the residue distance
recorder. The target position recorder is maintained by the
8158 software driver. It records the position to settle down for
current running motion.

_8158_set_res_distance:

This function is used to change the value of the residue dis-
tance counter

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_get_position(I16 AxisNo, F64 *Pos);
I16 _8158_set_position(I16 AxisNo, F64 Pos);
I16 _8158_get_command(I16 AxisNo, I32 *Command);
I16 _8158_set_command(I16 AxisNo, I32 Command);
I16 _8158_get_error_counter(I16 AxisNo, I16

*error);
I16 _8158_reset_error_counter(I16 AxisNo);
I16 _8158_get_general_counter(I16 AxisNo, F64

*CntValue);
I16 _8158_set_general_counter(I16 AxisNo, I16

CntSrc, F64 CntValue);
I16 _8158_get_target_pos(I16 AxisNo, F64 *T_pos);
I16 _8158_reset_target_pos(I16 AxisNo, F64

T_pos);
I16 _8158_get_res_distance(I16 AxisNo, F64

*Res_Distance);
I16 _8158_set_res_distance(I16 AxisNo, F64

Res_Distance);

Visual Basic (Windows 2000/XP)
B_8158_get_position(ByVal AxisNo As Integer, Pos

As Double) As Integer
B_8158_set_position(ByVal AxisNo As Integer,

ByVal Pos As Double) As Integer
B_8158_get_command(ByVal AxisNo As Integer, Cmd

As Long) As Integer
B_8158_set_command(ByVal AxisNo As Integer, ByVal

Cmd As Long) As Integer

182 Function Library

B_8158_get_error_counter(ByVal AxisNo As Integer,
ByRef error As Integer) As Integer

B_8158_reset_error_counter(ByVal AxisNo As
Integer) As Integer

B_8158_set_general_counter(ByVal AxisNo As
Integer, ByVal CntSrc As Integer, ByVal
CntValue As Double) As Integer

B_8158_get_general_counter(ByVal AxisNo As
Integer, ByRef Pos As Double) As Integer

B_8158_reset_target_pos(ByVal AxisNo As Integer,
ByVal Pos As Double) As Integer

B_8158_get_target_pos(ByVal AxisNo As Integer,
ByRef Pos As Double) As Integer

B_8158_set_res_distance(ByVal AxisNo As Integer,
ByVal Res_Distance As Double) As Integer

B_8158_get_res_distance(ByVal AxisNo As Integer,
ByRef Res_Distance As Double) As Integer

@ Argument
AxisNo: Axis number of Target Axis.

Pos, *Pos: Feedback position counter value, (_8158_get/
set_position)

range: -134217728-134217727

Cmd, *Cmd: Command position counter value,

range: -134217728-134217727

*error: Position error counter value,

range: -32768-32767

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Function Library 183

CntSrc: general counter source

CntValue, *CntValue: the counter value

TargetPos, *TargetPos: Target position recorder value,

range: -134217728-134217727

ResDistance, *ResDistance: residue distance

Value Meaning

0 Command pulse
1 EA/EB
2 Pulse input
3 System clock÷2

184 Function Library

6.15 Position Compare and Latch

@ Name
_8158_set_trigger_logic – Set the CMP signal’s logic

_8158_set_trigger_comparator – Set the trigger compara-
tor

_8158_set_error_comparator – Set the error comparator

_8158_set_general_comparator – Set the general compara-
tor

_8158_set_latch_source – Set the latch timing for a counter

_8158_set_ltc_logic – Set the logic of LTC signal

_8158_get_latch_data – Get the latch data from counter

@ Description
_8158_set_trigger_logic:

This function is used to set the logic of CMP single.

_8158_set_error_comparator:

This function is used to set the comparing method and value
for the error comparator. When the position error counter’s
value reaches the comparing value, the 8158 will generate an
interrupt to the host PC. Also see section 6.14 “Interrupt con-
trol”.

_8158_set_general_comparator:

This function is used to set the comparing source counter, com-
paring method and value for the general comparator. When the
comparison conditions are met, there is one of the 4 reactions
will be done. The detail setting, see the argument description.

_8158_set_trigger_comparator:

This function is used to set the comparing source counter, com-
paring method and value for the trigger comparator. When the
comparison source counter’s value reaches the comparing
value, the 8158 will generate a pulse output via CMP and an
interrupt (event_int_status, bit 12) will also be sent to host PC.

Function Library 185

_8158_set_latch_source:

There are 4 latch triggering source. By using this function, user
can choose the event source to latch counters’ data.

_8158_set_ltc_logic:

This function is used to set the logic of the latch input.

_8158_get_latch_data:

After the latch signal arrived, the function is used to read the
latched value of counters.

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_set_trigger_logic(I16 AxisNo, I16

Logic);
I16 _8158_set_error_comparator(I16 AxisNo, I16

CmpMethod, I16 CmpAction, I32 Data);
I16 _8158_set_general_comparator(I16 AxisNo, I16

CmpSrc, I16 CmpMethod, I16 CmpAction, I32
Data);

I16 _8158_set_trigger_comparator(I16 AxisNo, I16
CmpSrc, I16 CmpMethod, I32 Data);

I16 _8158_set_latch_source(I16 AxisNo, I16
LtcSrc);

I16 _8158_set_ltc_logic(I16 AxisNo, I16
LtcLogic);

I16 _8158_get_latch_data(I16 AxisNo, I16
CounterNo, F64 *Pos);

Visual Basic (Windows 2000/XP)
B_8158_set_trigger_logic(ByVal AxisNo As Integer,

ByVal Logic As Integer) As Integer
B_8158_set_error_comparator(ByVal AxisNo As

Integer, ByVal CmpMethod As Integer, ByVal
CmpAction As Integer, ByVal Data As Long) As
Integer

B_8158_set_general_comparator(ByVal AxisNo As
Integer, ByVal CmpSrc As Integer, ByVal
CmpMethod As Integer, ByVal CmpAction As
Integer, ByVal Data As Long) As Integer

186 Function Library

B_8158_set_trigger_comparator(ByVal AxisNo As
Integer, ByVal CmpSrc As Integer, ByVal
CmpMethod As Integer, ByVal Data As Long) As
Integer

B_8158_set_latch_source(ByVal AxisNo As Integer,
ByVal LtcSrc As Integer) As Integer

B_8158_set_ltc_logic(ByVal AxisNo As Integer,
ByVal StcLogic As Integer) As Integer

B_8158_get_latch_data(ByVal AxisNo As Integer,
ByVal CounterNo As Integer, Pos As Double)
As Integer

@ Argument
AxisNo: Axis number of Target Axis.

Logic: logic of comparing trigger

CmpSrc: The comparing source counters

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 Command counter
1 Feedback counter
2 Error counter
3 General counter

Function Library 187

CmpMethod: The comparing methods

Data: Comparing value (Position)

CmpAction:

ltc_src:

ltc_logic: LTC signal operation edge

CounterNo: Specified the counter to latch

Value Meaning

0 No Compare(Disable)
1 Data = Source counter (direction independent)
2 Data = Source counter (Count up only)
3 Data = Source counter (Count down only)
4 Data > Source counter
5 Data < Source counter

Value Meaning

0 No action
1 Stop immediately
2 Slow down then stop

Value Meaning

0 LTC pin input
1 ORG pin input
2 General comparator conditions are met
3 Trigger comparator conditions are met

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 Command counter
1 Feedback counter
2 Error counter
3 General counter

188 Function Library

*Pos: Latch data (Position)

Function Library 189

6.16 Continuous motion

@ Name
_8158_set_continuous_move – Enable continuous motion for
absolute motion

_8158_check_continuous_buffer – Check if the buffer is
empty

_8158_dwell_move – Set a dwell move

@ Description
_8158_set_continuous_move:

This function is necessary before and after continuous motion
command sequences

_8158_check_continuous_buffer:

This function is used to detect if the command pre-register
(buffer) is empty or not. Once the command pre-register
(buffer) is empty, users may write the next motion command
into it. Otherwise, the new command will overwrite the previous
command in the 2nd command pre-register. If the return code
is 1 means buffer is full. Otherwise return code is 0, buffer is
not full.

_8158_dwell_move:

This function is used to start a dwell move that means the
move does not cause real motion for a specific time.

Example:
_8158_set_continuous_move(2, 1); // start

continuous move
_8158_start_tr_move(2, 20000.0, 10.0, 10000.0,

0.1, 0.1);
_8158_dwell_move(2, 2000); //dwell move for 2

sec.
_8158_start_sr_move(2, 20000.0, 10.0, 10000.0,

0.1, 0.1, 0, 0);
_8158_set_continuous_move(2, 0); //end

continuous move

190 Function Library

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_set_continuous_move(I16 AxisNo, I16

Enable);
I16 _8158_check_continuous_buffer(I16 AxisNo);
I16 _8158_dwell_move(I16 AxisNo, F64 miniSecond);

Visual Basic (Windows 2000/XP)
B_8158_set_continuous_move(ByVal AxisNo As

Integer, ByVal Enable As Integer) As Integer
B_8158_check_continuous_buffer(ByVal AxisNo As

Integer) As Integer
B_8158_dwell_move(ByVal AxisNo As Integer, ByVal

miniSecond As Double) As Integer

@ Argument
AxisNo: Axis number of Target Axis.

Enable: continuous motion switch logic

millisecond: Time of dwell move. the unit is in millisecond (ms).

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Value Meaning

0 continuous motion sequence is finished (Disable)
1 continuous motion sequence is started (Enable)

Function Library 191

6.17 Multiple Axes Simultaneous Operation

@ Name
_8158_set_tr_move_all – Multi-axis simultaneous operation
setup

_8158_set_ta_move_all – Multi-axis simultaneous operation
setup

_8158_set_sr_move_all – Multi-axis simultaneous operation
setup

_8158_set_sa_move_all – Multi-axis simultaneous operation
setup

_8158_start_move_all – Begin a multi-axis trapezoidal profile
motion

_8158_stop_move_all – Simultaneously stop Multi-axis motion

@ Description
Theses functions are related to simultaneous operations of multi-
axes, even in different cards. The simultaneous multi-axis opera-
tion means to start or stop moving specified axes at the same
time. The axes moved are specified by the parameter “AxisArray,”
and the number of axes are defined by parameter “TotalAxes” in
_8158_set_tr_move_all().

When properly setup with _8158_set_xx_move_all(), the function
_8158_start_move_all() will cause all specified axes to begin a
trapezoidal relative movement, and _8158_stop_move_all() will
stop them. Both functions guarantee that motion Starting/Stopping
on all specified axes are at the same time. Note that it is neces-
sary to make connections according to section 2.6 if these two
functions are needed.

The following code demos how to utilize these functions. This
code moves axis 0 and axis 1 to distance 80000.0 and 120000.0
respectively. If we choose velocities and accelerations that are
proportional to the ratio of distances, then the axes will arrive at
their endpoints at the same time.

[Example]

192 Function Library

I16 axes[2] = {0, 1};
F64 dist[2] = {80000.0, 120000.0},
F64 str_vel[2] = {0.0, 0.0},
F64 max_vel[2] = {4000.0, 6000.0},
F64 Tacc[2] = {0.1, 0.6},
F64 Tdec[2] = {0.1, 0.6};

_8158_set_tr_move_all(2, axes, dist, str_vel,
max_vel, Tacc, Tdec);

_8158_start_move_all(axes[0]);

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_set_tr_move_all(I16 TotalAxes, I16

*AxisArray, F64 *DistA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA);

I16 _8158_set_ta_move_all(I16 TotalAx, I16
*AxisArray, F64 *PosA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA);

I16 _8158_set_sr_move_all(I16 TotalAx, I16
*AxisArray, F64 *DistA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA, F64
*SVaccA, F64 *SVdecA);

I16 _8158_set_sa_move_all(I16 TotalAx, I16
*AxisArray, F64 *PosA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA, F64
*SVaccA, F64 *SVdecA);

I16 _8158_start_move_all(I16 FirstAxisNo);
I16 _8158_stop_move_all(I16 FirstAxisNo);

Visual Basic (Windows 2000/XP)
B_8158_set_tr_move_all(ByVal TotalAxes As

Integer, ByRef AxisArray As Integer, ByRef
DistA As Double, ByRef StrVelA As Double,
ByRef MaxVelA As Double, ByRef TaccA As
Double, ByRef TdecA As Double) As Integer

B_8158_set_sa_move_all(ByVal TotalAxes As
Integer, ByRef AxisArray As Integer, ByRef
PosA As Double, ByRef StrVelA As Double,
ByRef MaxVelA As Double, ByRef TaccA As
Double, ByRef TdecA As Double, ByRef SVaccA

Function Library 193

As Double, ByRef SVdecA As Double) As
Integer

B_8158_set_ta_move_all(ByVal TotalAxes As
Integer, ByRef AxisArray As Integer, ByRef
PosA As Double, ByRef StrVelA As Double,
ByRef MaxVelA As Double, ByRef TaccA As
Double, ByRef TdecA As Double) As Integer

B_8158_set_sr_move_all(ByVal TotalAxes As
Integer, ByRef AxisArray As Integer, ByRef
DistA As Double, ByRef StrVelA As Double,
ByRef MaxVelA As Double, ByRef TaccA As
Double, ByRef TdecA As Double, ByRef SVaccA
As Double, ByRef SVdecA As Double) As
Integer

B_8158_start_move_all(ByVal FirstAxisNo As
Integer) As Integer

B_8158_stop_move_all(ByVal FirstAxisNo As
Integer) As Integer

@ Argument
TotalAxes: Number of axes for simultaneous motion

*AxisArray: Specified axes number array designated to move.

*DistA: Specified distance array in units of pulse

*StrVelA: Starting velocity array in units of pulse per second

*MaxVelA: Maximum velocity array in units of pulse per second

*TaccA: Acceleration time array in units of seconds

*TdecA: Deceleration time array in units of seconds

*PosA: Specified position array in units of pulse

*SvaccA: Specified velocity interval array in which S-curve accel-
eration is performed.

*SvdecA: Specified velocity interval array in which S-curve decel-
eration is performed.

FirstAxisNo: The first element in AxisArray.

194 Function Library

6.18 General-purpose DIO

@ Name
_8158_set_gpio_output – Set digital output

_8158_get_gpio_output – Get digital output

_8158_get_gpio_input – Get digital input

_8158_set_gpio_input_function – Set the signal types for
any digital inputs

@ Description
_8158_set_gpio_output:

The PCI-8158 has 8 digital output channels. By this function,
user could control the digital outputs.

_8158_get_gpio_output:

This function is used to get the digital output status.

_8158_get_gpio_input:

PCI-8158 has 8 digital input channels. By this function, user
can get the digital input status.

_8158_set_gpio_input_function:

PCI-8158 has 8 digital input channels. By this function, user
can set one of several input signals to any specific DI channels.
Those signals include LTCn, SDn, PCSn, CLRn, EMG. (The
index word n mean axis index.)

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_set_gpio_output(I16 card_id, I16

DoValue);
I16 _8158_get_gpio_output(I16 card_id, I16 *

DoValue);
I16 _8158_get_gpio_input(I16 card_id, I16 *

DiValue);
I16 _8158_set_gpio_input_function(I16 card_id,

I16 Channel, I16Select, I16 Logic);

Function Library 195

Visual Basic (Windows 2000/XP)
B_8158_set_gpio_output(ByVal card_id As Integer,

ByVal DoValue As Integer) As Integer
B_8158_get_gpio_output(ByVal card_id As Integer,

DoValue As Integer) As Integer
B_8158_get_gpio_input(ByVal card_id As Integer,

DiValue As Integer) As Integer
B_8158_set_gpio_input_function(ByVal card_id As

Integer, ByVal Channel As Integer, ByVal
Select As Integer, ByVal Logic As Integer)As
Integer

@ Argument
card_id: Specify the PCI-8158 card index. The card_id could be
decided by DIP switch (SW1) or depend on slot sequence. Please
refer to _8158_initial().

DoValue, *DoValue: Digital output value. Bit 0-7: D_out0-7.

*DiValue: Digital input value, Bit 0-7: D_in0-7

Channel: Digital channel DI0 - DI7

Select: signal types select

Logic: input signal logic

Value Meaning

0 General DI (default)
1 LTC (active low)
2 SD (active low)
3 PCS (active low)
4 CLR (active low)
5 EMG (active low)

Value Meaning

0 Not inverse (default)
1 Inverse

196 Function Library

6.19 Soft Limit

@ Name
_8158_disable_soft_limit – Disable soft limit function

_8158_enable_soft_limit – Enable soft limit function

_8158_set_soft_limit – Set soft limit

@ Description
_8158_disable_soft_limit:

This function is used to disable the soft limit function.

_8158_enable_soft_limit:

This function is used to enable the soft limit function. Once
enabled, the action of soft limit will be exactly the same as
physical limit.

_8158_set_soft_limit:

This function is used to set the soft limit value.

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_disable_soft_limit(I16 AxisNo);
I16 _8158_enable_soft_limit(I16 AxisNo, I16

Action);
I16 _8158_set_soft_limit(I16 AxisNo, I32

PlusLimit, I32 MinusLimit);

Visual Basic (Windows 2000/XP)
B_8158_disable_soft_limit(ByVal AxisNo As

Integer) As Integer
B_8158_enable_soft_limit(ByVal AxisNo As Integer,

ByVal Action As Integer) As Integer
B_8158_set_soft_limit(ByVal AxisNo As Integer,

ByVal PlusLimit As Long, ByVal MinusLimit As
Long) As Integer

Function Library 197

@ Argument
AxisNo: Axis number of Target Axis.

Action: The reacting method of soft limit

PlusLimit: Soft limit value, positive direction

MinusLimit: Soft limit value, negative direction

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Value Meaning

0 INT only
1 Immediately stop
2 slow down then stop

198 Function Library

6.20 Backlash Compensation / Vibration Suppression

@ Name
_8158_backlash_comp – Set backlash corrective pulse for
compensation

_8158_suppress_vibration – Set vibration suppressing tim-
ing

_8158_set_fa_speed – Set the FA speed

@ Description
_8158_backlash_comp:

Whenever direction change occurs, the 8158 outputs backlash
corrective pulses before sending commands. This function is
used to set the compensation pulse numbers.

_8158_suppress_vibration:

This function is used to suppress vibration of mechanical sys-
tems by outputting a single pulse for negative direction and the
single pulse for positive direction right after completion of com-
mand movement.

_8158_set_fa_speed:

This function is used to specify the low speed for backlash cor-
rection or slip correction. It also used as a reverse low speed
for home return operation.

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_backlash_comp(I16 AxisNo, I16

CompPulse, I16 Mode);
I16 _8158_suppress_vibration(I16 AxisNo, U16

ReverseTime,
U16 ForwardTime);
I16 _8158_set_fa_speed(I16 AxisNo, F64 FA_Speed);

Function Library 199

Visual Basic (Windows 2000/XP)
B_8158_backlash_comps (ByVal AxisNo As Integer,

ByVal CompPulse As Integer, ByVal Mode As
Integer) As Integer

B_8158_suppress_vibration(ByVal AxisNo As
Integer, ByVal ReverseTime As Integer, ByVal
ForwardTime As Integer) As Integer

B_8158_set_fa_speed(ByVal AxisNo As Integer,
ByVal FA_Speed As Double) As Integer

@ Argument
AxisNo: Axis number of Target Axis.

CompPulse: Specified number of corrective pulses, 12 bit

Mode:

ReverseTime: Specified Reverse Time, 0 - 65535, unit 1.6 us

ForwardTime: Specified Forward Time, 0 - 65535, unit 1.6 us

FA_Speed: fa speed (unit: pulse/sec)

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Value Meaning

0 Turns off
1 Enable backlash compensation
2 Slip correction

200 Function Library

6.21 Speed Profile Calculation

@ Name
_8158_get_tr_move_profile – Get the relative trapezoidal
speed profile

_8158_get_ta_move_profile – Get the absolute trapezoidal
speed profile

_8158_get_sr_move_profile – Get the relative S-curve
speed profile

_8158_get_sa_move_profile – Get the absolute S-curve
speed profile

@ Description
_8158_get_tr_move_profile:

This function is used to get the relative trapezoidal speed pro-
files. By this function, user can get the actual speed profile
before running.

_8158_get_ta_move_profile:

This function is used to get the absolute trapezoidal speed pro-
files. By this function, user can get the actual speed profile
before running.

_8158_get_sr_move_profile:

This function is used to get the relative S-curve speed profiles.
By this function, user can get the actual speed profile before
running.

_8158_get_sa_move_profile:

This function is used to get the absolute S-curve speed pro-
files. By this function user can get the actual speed profile
before running.

Function Library 201

@ Syntax

C/C++(Windows 2000/XP)
I16 _8158_get_tr_move_profile(I16 AxisNo, F64

Dist, F64 StrVel, F64 MaxVel, F64 Tacc, F64
Tdec, F64 *pStrVel, F64 *pMaxVel, F64
*pTacc, F64 *pTdec, F64 *pTconst);

I16 _8158_get_ta_move_profile(I16 AxisNo, F64
Pos, F64 StrVel, F64 MaxVel, F64 Tacc, F64
Tdec, F64 *pStrVel, F64 *pMaxVel, F64
*pTacc, F64 *pTdec, F64 *pTconst);

I16 _8158_get_sr_move_profile(I16 AxisNo, F64
Dist, F64 StrVel, F64 MaxVel, F64 Tacc, F64
Tdec, F64 SVacc, F64 SVdec,F64 *pStrVel, F64
*pMaxVel, F64 *pTacc, F64 *pTdec, F64
*pSVacc, F64 *pSVdec, F64 *pTconst);

I16 _8158_get_sa_move_profile(I16 AxisNo, F64
Pos, F64 StrVel, F64 MaxVel, F64 Tacc, F64
Tdec, F64 SVacc, F64 SVdec,F64 *pStrVel, F64
*pMaxVel, F64 *pTacc, F64 *pTdec, F64
*pSVacc, F64 *pSVdec, F64 *pTconst);

Visual Basic (Windows 2000/XP)
B_8158_get_tr_move_profile(ByVal AxisNo As

Integer, ByVal Dist As Double, ByVal StrVel
As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByRef
pStrVel As Double, ByRef pMaxVel As Double,
ByRef pTacc As Double, ByRef pTdec As
Double, ByRef pTconst As Double) As Integer

B_8158_get_ta_move_profile(ByVal AxisNo As
Integer, ByVal Pos As Double, ByVal StrVel
As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByRef
pStrVel As Double, ByRef pMaxVel As Double,
ByRef pTacc As Double, ByRef pTdec As
Double, ByRef pTconst As Double) As Integer

B_8158_get_sr_move_profile(ByVal AxisNo As
Integer, ByVal Dist As Double, ByVal StrVel
As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal
SVacc As Double, ByVal SVdec As Double,
ByRef pStrVel As Double, ByRef pMaxVel As

202 Function Library

Double, ByRef pTacc As Double, ByRef pTdec
As Double, ByRef pSVacc As Double, ByRef
pSVdec As Double, ByRef pTconst As Double)
As Integer

B_8158_get_sa_move_profile(ByVal AxisNo As
Integer, ByVal Pos As Double, ByVal StrVel
As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal
SVacc As Double, ByVal SVdec As Double,
ByRef pStrVel As Double, ByRef pMaxVel As
Double, ByRef pTacc As Double, ByRef pTdec
As Double, ByRef pSVacc As Double, ByRef
pSVdec As Double, ByRef pTconst As Double)
As Integer

@ Argument
AxisNo: Axis number of Target Axis.

Dist: Specified relative distance (unit: pulse)

Pos: Specified absolute position (unit: pulse)

StrVel: Starting velocity (unit: pulse/sec)

MaxVel: Maximum velocity (unit: pulse/sec)

Tacc: time for acceleration (unit: sec)

Tdec: time for deceleration (unit: sec)

SVacc: S-curve region during acceleration (unit: pulse/sec)

Note: SVacc = 0, for pure S-Curve. For more details, see sec-
tion 4.2.4

card_id Physical axis AxisNo

0

0 0
1 1
… …
7 7

1
0 8
1 9
… …

Function Library 203

SVdec: S-curve region during deceleration (unit: pulse/sec)

Note: SVdec = 0, for pure S-Curve. For more details, see sec-
tion 4.2.4

*pStrVel: Starting velocity by calculation

*pMaxVel: Maximum velocity by calculation

*pTacc: Acceleration time by calculation

*pTdec: Deceleration time by calculation

*pSVacc: S-curve region during acceleration by calculation

*pSVdec: S-curve region during deceleration by calculation

*pTconst: constant speed time(maximum speed)

204 Function Library

6.22 Return Code
The return error code is defined in “8158_err.h”. The meaning is
described in following table.

Code Meaning

0 No error

-10000 Error Card number

-10001 Error operation system version

-10002 Error card’s ID conflict

-10300 Error other process exist

-10301 Error card not found

-10302 Error Open driver failed

-10303 Error ID mapping failed

-10304 Error trigger channel

-10305 Error trigger type

-10306 Error event already enabled

-10307 Error event not enable yet

-10308 Error on board FIFO full

-10309 Error unknown command type

-10310 Error unknown chip type

-10311 Error card not initial

-10312 Error position out of range

-10313 Error motion busy

-10314 Error speed error

-10315 Error slow down point

-10316 Error axis range error

-10317 Error compare parameter error

-10318 Error compare method

-10319 Error axis already stop

-10320 Error axis INT wait failed

-10321 Error user code write failed

-10322 Error array size exceed

-10323 Error factor number

-10324 Error enable range

-10325 Error auto accelerate time

-10326 Error dwell time

-10327 Error dwell distance

-10328 Error new position

-10329 Error motion not in running

Function Library 205

-10330 Error velocity change time

-10331 Error speed target

-10332 Error velocity percent

-10333 Error position change backward

-10334 Error counter number

-10335 Error gpio input function parameter

-10336 Error channel number

-10337 Error ERC mode

-10338 Error security code

Code Meaning

206 Function Library

Connection Example 207

7 Connection Example
This chapter shows some connection examples between the PCI-
8158 and servo drivers and stepping drivers.

7.1 General Description of Wiring
The connection between the PCI-8158 and the pulse input servo
driver or stepping driver is the main connection. The following fig-
ure illustrates how to integrate the PCI-8158 and DIN-814M-J3A.

7.2 Terminal Board User Guide
Please refer the individual user guide of terminal board. The sup-
ported terminal boards are as follows:

Mitsubishi J2 Super DIN-814M
Mitsubishi J3A DIN-814M-J3A
Yaskawa Sigma II DIN-814Y
Panasonic MINAS A4 DIN-814P-A4

208 Connection Example

Warranty Policy 209

Warranty Policy
Thank you for choosing ADLINK. To understand your rights and
enjoy all the after-sales services we offer, please read the follow-
ing carefully.

1. Before using ADLINK’s products please read the user man-
ual and follow the instructions exactly. When sending in
damaged products for repair, please attach an RMA appli-
cation form which can be downloaded from: http://
rma.adlinktech.com/policy/.

2. All ADLINK products come with a limited two-year war-
ranty, one year for products bought in China:

The warranty period starts on the day the product is
shipped from ADLINK’s factory.
Peripherals and third-party products not manufactured
by ADLINK will be covered by the original manufactur-
ers' warranty.
For products containing storage devices (hard drives,
flash cards, etc.), please back up your data before send-
ing them for repair. ADLINK is not responsible for any
loss of data.
Please ensure the use of properly licensed software with
our systems. ADLINK does not condone the use of
pirated software and will not service systems using such
software. ADLINK will not be held legally responsible for
products shipped with unlicensed software installed by
the user.
For general repairs, please do not include peripheral
accessories. If peripherals need to be included, be cer-
tain to specify which items you sent on the RMA Request
& Confirmation Form. ADLINK is not responsible for
items not listed on the RMA Request & Confirmation
Form.

210 Warranty Policy

3. Our repair service is not covered by ADLINK's guarantee
in the following situations:

Damage caused by not following instructions in the
User's Manual.
Damage caused by carelessness on the user's part dur-
ing product transportation.
Damage caused by fire, earthquakes, floods, lightening,
pollution, other acts of God, and/or incorrect usage of
voltage transformers.
Damage caused by unsuitable storage environments
(i.e. high temperatures, high humidity, or volatile chemi-
cals).
Damage caused by leakage of battery fluid during or
after change of batteries by customer/user.
Damage from improper repair by unauthorized ADLINK
technicians.
Products with altered and/or damaged serial numbers
are not entitled to our service.
This warranty is not transferable or extendible.
Other categories not protected under our warranty.

4. Customers are responsible for shipping costs to transport
damaged products to our company or sales office.

5. To ensure the speed and quality of product repair, please
download an RMA application form from our company web-
site: http://rma.adlinktech.com/policy. Damaged products
with attached RMA forms receive priority.

If you have any further questions, please email our FAE staff:
service@adlinktech.com.

mailto:service@adlinktech.com

	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Features
	1.2 Specifications
	1.3 Supported Software
	1.3.1 Programming Library
	1.3.2 MotionCreatorPro

	1.4 Available Terminal Board

	2 Installation
	2.1 Package Contents
	2.2 PCI-8158 Outline Drawing
	2.3 PCI-8158 Hardware Installation
	2.3.1 Hardware configuration
	2.3.2 PCI slot selection
	2.3.3 Installation Procedures
	2.3.4 Troubleshooting

	2.4 Software Driver Installation
	2.5 P1/P2 Pin Assignments: Main Connector
	2.6 K1/K2 Pin Assignments: Simultaneous Start/ Stop
	2.7 J1 to J16 Jumper Settings for Pulse Output
	2.8 S1 Switch Settings for Card Index
	2.9 P3 Manual Pulse

	3 Signal Connections
	3.1 Pulse Output Signals OUT and DIR
	3.2 Encoder Feedback Signals EA, EB and EZ
	3.2.1 Connection to Line Driver Output
	3.2.2 Connection to Open Collector Output

	3.3 Origin Signal ORG
	3.4 End-Limit Signals PEL and MEL
	3.5 In-position Signal INP
	3.6 Alarm Signal ALM
	3.7 Deviation Counter Clear Signal ERC
	3.8 General-purpose Signal SVON
	3.9 General-purpose Signal RDY
	3.10 Multi-Functional output pin: DO/CMP
	3.11 Multi-Functional input pin: DI/LTC/SD/PCS/CLR/ EMG
	3.12 Pulse Input Signals PA and PB (PCI-8158)
	3.13 Simultaneously Start/Stop Signals STA and STP

	4 Operation Theory
	4.1 Classifications of Motion Controller
	4.1.1 Voltage type motion control Interface
	4.1.2 Pulse type motion control Interface
	4.1.3 Network type motion control Interface
	4.1.4 Software real-time motion control kernel
	4.1.5 DSP based motion control kernel
	4.1.6 ASIC based motion control kernel
	4.1.7 Compare Table of all motion control types
	4.1.8 PCI-8158’s motion controller type

	4.2 Motion Control Modes
	4.2.1 Coordinate system
	4.2.2 Absolute and relative position move
	4.2.3 Trapezoidal speed profile
	4.2.4 S-curve and Bell-curve speed profile
	4.2.5 Velocity mode
	4.2.6 One axis position mode
	4.2.7 Two axes linear interpolation position mode
	4.2.8 Two axes circular interpolation mode
	4.2.9 Continuous motion
	4.2.10 Home Return Mode
	4.2.11 Home Search Function
	4.2.12 Manual Pulse Function
	4.2.13 Simultaneous Start Function
	4.2.14 Speed Override Function
	4.2.15 Position Override Function

	4.3 The motor driver interface
	4.3.1 Pulse Command Output Interface
	4.3.2 Pulse feedback input interface
	4.3.3 In position signal
	4.3.4 Servo alarm signal
	4.3.5 Error clear signal
	4.3.6 Servo ON/OFF switch
	4.3.7 Servo Ready Signal
	4.3.8 Servo alarm reset switch

	4.4 Mechanical switch interface
	4.4.1 Original or home signal
	4.4.2 End-Limit switch signal
	4.4.3 Slow down switch
	4.4.4 Positioning Start switch
	4.4.5 Counter Clear switch
	4.4.6 Counter Latch switch
	4.4.7 Emergency stop input

	4.5 The Counters
	4.5.1 Command position counter
	4.5.2 Feedback position counter
	4.5.3 Command and Feedback error counter
	4.5.4 General purpose counter
	4.5.5 Target position recorder

	4.6 The Comparators
	4.6.1 Soft end-limit comparators
	4.6.2 Command and feedback error counter comparators
	4.6.3 General comparator
	4.6.4 Trigger comparator

	4.7 Other Motion Functions
	4.7.1 Backlash compensation and slip corrections
	4.7.2 Vibration restriction function
	4.7.3 Speed profile calculation function

	4.8 Interrupt Control
	4.9 Multiple Card Operation

	5 MotionCreatorPro
	5.1 Execute MotionCreatorPro
	5.2 About MotionCreatorPro
	5.3 MotionCreatorPro Form Introducing
	5.3.1 Main Menu
	5.3.2 Select Menu
	5.3.3 Card Information Menu
	5.3.4 Configuration Menu
	5.3.5 Single Axis Operation Menu
	5.3.6 Two-Axis Operation Menu
	5.3.7 2D_Motion Menu
	5.3.8 Help Menu

	6 Function Library
	6.1 List of Functions
	6.2 C/C++ Programming Library
	6.3 System & Initialization
	6.4 Pulse Input/Output Configuration
	6.5 Velocity mode motion
	6.6 Single Axis Position Mode
	6.7 Linear Interpolated Motion
	6.8 Circular Interpolation Motion
	6.9 Home Return Mode
	6.10 Manual Pulser Motion
	6.11 Motion Status
	6.12 Motion Interface I/O
	6.13 Interrupt Control
	6.14 Position Control and Counters
	6.15 Position Compare and Latch
	6.16 Continuous motion
	6.17 Multiple Axes Simultaneous Operation
	6.18 General-purpose DIO
	6.19 Soft Limit
	6.20 Backlash Compensation / Vibration Suppression
	6.21 Speed Profile Calculation
	6.22 Return Code

	7 Connection Example
	7.1 General Description of Wiring
	7.2 Terminal Board User Guide

	Warranty Policy

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

