PIO-16/16L(PC)V
For the IBM PC/AT

User's Guide

Copyright

Copyright 1997 CONTEC MICROELECTRONICS, U.S.A., Inc.
ALL RIGHTS RESERVED

No part of this document may be copied or reproduced in any form
by any means without prior written consent of CONTEC MICRO-
ELECTRONICS, U.S.A,, Inc,

CONTEC MICROELECTRONICS makes no commitment to update
or keep current the information contained in this document. The
information in this document is subject to change without notice.

All relevant issues have been considered in the preparation of this
document. Should you notice an omission or any questionable item
in this document, please feel free to notify CONTEC MICROELEC-
TRONICS, U.S.A., Inc.

Regardless of the foregoing statement, CONTEC assumes no respon-

sibility for any errors that may appear in this document nor for
results obtained by the user as a result of using this product.

PIO-1616L(PC)V Page i

Product Configuration

Note!

Note!

PIO-16/16L(PC)V Board ... 1
User's Guide (this booklet) ... 1

Unpacking:
This board is specially packed to prevent damage in shipping. Itis
wrapped in an anti-static bag.

Do not remove the board from its protective packaging until the
computer case is open and ready for installation. Electrical static
can cause damage to electronic components.

Check the contents to make sure that you have everything listed
above. If you don't have all the items, please contact CONTEC.,

User feedback

Page ii

We have tried to consider all possible issues in the preparation of this
User's Guide. Should you notice any omission, mistake, or question-
able item in the document, please free to contact;

CONTEC MICROELECTRONICS US.A., INC.

Phone: (800)888-8884 (Call Toll Free)
(408)434-6767
Fax: (408)434-6884

PIO-16/16L(PC)V

Table of Contents

INTRODUCTION... 1
About the PI10O- 16!16L(PC)V Board w1
Features w1
Limited Three Year Warranty w2
How to Obtain Service... w2
Functions .. e 3
Organlzatlon of Thls Gmde . 4

~ Chapter 1. SETUP . 5

Component LOCAtONScecumniieniasmirinmsnisssessssissssssessssesssessasees 9

Setting 1/O AdArESSEScovruvisisrinucisssssmsssiismsiessmesssssssssssssnsansssssns O
NotesB
Setting Method 7

Setting Interrupt Levels8
Notes .. . w8
Setting Method .8

Chapter 2. EXTERNAL CONNECTIONccccocimmmnmnmsrnsensense 10

Interface Connector... SOPURRRPSUP, {0
Connecting the Interface Connector S OP R, |8
Interface Connector Pin Asmgnment cerreseersesnrensessnssnnereseneees 11

Input Circuit and Cutput Circuit12

Chapter 3. 1/0 Port BIT ASSIGNMENT... 14

I/O Port Bit Assignment... .14
Input Port Bit Asmgnment . 14

Qutput Port Bit Assignment... ereenesrnrenesasnressnrsernesensins 19

Chapter 4. BOARD SPECIFICATIONS 16

Block Dlagram —— .16

Specifications ... 17

APPENDIX....cou.e “ ..18

A. Interrupts on the PC/AT Sanes SRRV, | - |

B. LSI Recovery Time 35

C. Sample Programs... .. 36

D. Measures Against Voltages .53

INDEX ...cocervennssnsseesuasesssssssssmssssssansassassansssnsnsannsssnsssnssnsssssssanssnns 54

PIO-16/16L(PC)V Page iii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14,
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure' 24.
Figure 25.

Page iv

Names and Factory Defaults of Parts
Recommended /O Addressescccovvrvensnnssiernrecanee
/O Address Settingcccsinimsmenieinisessmnsesssnes
Disabling INEITUPLS ..c.vcenirnseereeiecmesnessienssnesmme e cnasnae
INterrupt SERiNGS ... oo covrrmrmrmrmsariesresssres i saeaenes
Sample Interrupt SEttingsccvveineninicinniniieeisen
Interface CONNECEON .uuviceiierrinnsierrsnesrennsnnessnsssneaas
Interface Connetor Pin Assignments
INPUL CIFCUIt wovvvcrerceerissenisnn e et raiine

Output Circuitcocvvrrrsrvreerreecssesseninnins

Block Diagram.......cccuasersssens
Interrupt Controllersccueveivenins

DIP Switch Settingsccccvvmirnvesssemcicsriiniiunisnnnans
Function Select Jumper Settingc.oouvmreeemienrcnsans
Flowchart for Sample Output Programcce.eu
DIP Switch Settingscivurmimmirsrnsmssnsnnroneseescecssans
Function Select Jumper Settingcccoccviniiininine
Flowchart for Sample Output Programcee....
DIP Switch Settings ...cvvvvviveemiinmrisneeiesctisesaisnnens
Function Select Jumper Settingcouereveeseninnreneenes
Interrupt Jumper Settingsccininmnnennieinane
Flowchart for Sample Output Programc..eee.
Samples of Surge Voltage Programc.cceivanns

PIO-16/16L(PC)V

0 O W N OO

10

v 11
e 12
w13
input Port Bit Assignment........vneirieneesinisanen, 14
Output Port Bit Assignment..........ccceriininiinniannns
.16

.19

156

36
36
37
41
41
42
47

.47

47
48
53

Table 1 Example of I/O address range .. S 4
Table 2. Specifications ... vresreeresssssnnannnresnnens 17
Table 3. Addresses and Vectors Asmgned

in Interrupt Vector Table 20

Table 4. Interrupt Levels and Interrupt Controller Data............. 22
Table 5. Number of Times the IN Instruction Must be Executed
for the 2EFh Port After Accessing the LSlI........... 35

PIO-16/16L(PC)V Page v

Introduction

About the P1O-16/16L(PC)V Board

The PIO-16/16L(PC)V is a 16 channel digital input and output
interface board for the IBM PC/AT and compatible computers. It
can also be installed into a CONTEC I/O expansion unit. It inputs
16 current-source signals and outputs 16 current-sink signals.

Features

« Photo-Insulated input/outputs providing improved noise resistance

« Up to 16 (8 signals x 2 groups) current-source type input signals

« Up to 16 (8 signals x 2 groups) current-sink type output signals

« Two input signals can also generate interrupt requests

« Up to 35 DVC, 200mA per signal, max.(2A per common, max.}
output ability

PIO-16/16L{PC)V Page 1

Introduction

Limited Three Year Warranty

CONTEC Interface boards are warranted by CONTEC MICRO-
ELECTRONICS, U.S.A., Inc, to be free from defects in material and
workmanship for up to three year from the date of purchase by the
original purchaser,

Replacement or repair will be free of charge only when this device is
returned to CONTEC U.S.A., freight prepaid with the original in-
voice.

This warranty is not applicable for scratches or normal wear, but
only for the electronic circuitry and original boards. Itis also not
applicable if the device has been tampered with or damaged through
abuse, mistreatment, neglect or unreasonable use, or if the original
invoice is not included, in which case repairs will be considered
beyond the warranty policy. If a replacement with a new device is
needed, regular factory prices will be charged, and the product will
be returned to you COD, and no other written warranty will apply.

The obligation of the warrantor is solely to repair or replace the
product. In no event will the warrantor be liable for any incidental or
consequential damages due to such defect or consequences that arise
from inexperienced usage, misuse, or malfunction of this device.

How to Obtain Service

For replacement or repair, return the device freight prepaid, with a
copy of the original invoice. Please obtain a Return Merchandise
Authorization Number (RMA) from our Sales Administration De-
partment before returning any product. No product will be accepted
without an RMA number.)

CONTEC MICROELECTRONICS U.S.A,, INC.
2188 Bering Drive
San Jose, CA 95131

Phone: (800) 888-8884 (Call Toll Free)
(408) 434-6767
Fax: (408)434-6884

Page 2 PIO-16/16L{PC)V

Introduction

Functions

* Input

This board installed on a personal computer (PC) inputs up to 16
digital signals in groups each consisting of eight signals from an
external device and passes them to the PC. The PC accesses this
board for input through the four arbitrarily configurable input ports.
When the IN instruction is executed to read data through any of these
input ports, the buffer gate corresponding to that input port opens to
receive the group of digital signals from the external device. The
signals sent to the PC at this time have negative logic. Since the two
signals among the 16 input signals are user-assignable as interrupt
inputs of the PC, the user can use them as interrupt request signals,

+ Output

This board writes up to 16 digital signals in groups each consisting
of eight signals to the external device. The PC accesses the board for
output through the four arbitrarily configurable output ports. When
the OUT instruction is executed to write data to any of these output
ports, the latch circuit corresponding to that output port holds the
data. The digital signals are then electrically insulated by the
photocoupler and output to the connected external device as a group
of signals via the transistor. The signals output to the external device
at this time have negative logic. The data in the latch circuit remains
intact until the OUT instruction is executed again,

PIO-16/16L(PC)V Page 3

Introduction

Organization of This Guide
This guide consists of the following chapters and appendix:

Chapter 1. Setup
This chapter explains how to set switches on this board.

Chapter 2. External Connection
This chapter describes the interface connector and external /O
circuits on the board.

Chapter 3. I/O Port Bit Assignment
This chapter describes the assignments and definitions of the indi-
vidual bits in the I/O ports on the board.

Chapter 4. Board Specifications

This chapter contains the specifications and block diagram of the
board.

Appendix

This appendix provides useful information on using the board for
your reference.

Page 4 PIO-16/16L(PC)V

Chapter 1. Setup

Component Locations
Figure 1. identifies the major parts on the board.

Note that the switch and jumper settings in the illustration below
indicate their factory defaults.

+ /O address satling swilches (SW1, SW2)

-0 M T W O~ o e B N)

{THTH wiL

+ Intarrupt signal sefting jumper (JP1}

ra|O OO OO0 O
¢ 3 4 5 B 7

Figure 1. Names and Factory Defaults of Parts

PIO-16/6L(PC)V Page 5

Chapter 1. Setup

Setting /O Addresses

Page 6

This board is an I/O device controlled by input/output instructions
from by the personal computer. 1/0 devices include those built-in
the personal computer and expansion boards. I/O addresses are
numbers for distinguishing individual I/O devices. The I/O address
assigned to each I/O device is a four-digit hexadecimal number, such
as 0300H, used to identify that /O device,

In general, each expansion board is controlled by using a range of
consecutive I/O addresses. ‘Of these consecutive I/O addresses, the
first value is the I/O base address of the expansion board.

This board uses consecutive I/O addresses for the two ports.

Notes

The PC/AT and compatibles operate hardware devices by executing
/O instructions on I/0 address in a range of [0000H to FFFFH]. On
these PCs, however, specific I/O addresses are used or reserved by
the system for the CRT, keyboard, and other controls as shown in the
address map found in their technical manual. That is, the user cannot
uses these system-assigned /O addresses.
Although /O addresses available to the user are limited, CONTEC
recommends the ranges of I/O addresses listed in Figure 2. for use by
this board.

a dod IO
*300H to *31FH

*700H to *71
*BOOH to *B1FH
*FOOH to *FIFH (" Ary value from 010 F)

Figure 2. Recommended I/O Addresses

Although these recommendations specify the three low-order digits
of each /O address (in hexadecimal), you can select the high-order
digit freely from among 0 to F.

If your PC uses more than one expansion board, the I/O address
range occupied by each board must not overlap that for another.

If a LAN board has been installed on your PC, 300H to 31FH have
already been used for the board. Be careful not to assign an /O
address range to this board, which conflicts with the I/O address
range for the LAN board.,

PIO-16/16L(PC)V

Chapter 1. Setup

Setting Method
Use the on-board DIP switches (SW1 and SW2) to set the I/O base
address of this board. Individual bits in the SW1 and SW2 corre-
spond to the 15 high-order bits (A15 to Al) in the I/O base address.
Set AQ always to "0" (OFF).
The ON and OFF states of bits in the SW1 and SW2 correspond to
the binary values of "1" and "0" in the /O base address, respectively.

Wi Swz2
-0 MW@ e

0 M W Do

AR R

Binay ©0 ©0 0 ©0 ©0 0 1 1 9 0 0 0 0 0 0 O
Hexadecimal [] E] [Q

Figure 3. 1/O Address Setting

Figure 3 shows an I/O base address setting of 0300H, assigning the I/

O address range specified in Table 1. to this board.

Table 1. Example of I/O address range
Functions to be used General-gurgose 1/O function

/O addresses 0300H to 0301H
to be occupled

(2 ports)

PIO-16/16L(PC)V Page 7

Chapter 1. Setup

Setting Interrupt Levels

Page 8

This board can use signals, such as two digital signals among 16
input signals, as interrupt request signals, Thesc signals are used to
issue interrupt requests to the PC, making the interrupt functions of
the PC available., Use the on-board jumper (JP1) to set interrupt
levels.

To disable interrupts, use lead strapping connectors to prevent input
signals from being connected to specific levels.

To enable interrupts, use the on-board jumper (JP1) to set interrupt
levels. The interrupt levels set for this board are IRQs 3 t0 7, 9 to
12, 14, and 15. Set those not used for the PC and for any other
board. Up to four levels of interrupt request signals can be assigned,
corresponding to input signals on a one-to-one basis.

Notes

(1) When using interrupts, set interrupt Jevels which are not used for
any other resource.

(2) Do not plug or unplug any strapping connector on the JP1 when
power has been supplied to the PC (or I/O expansion unit) on
which this board has been installed.

Setting Method

Use the on-board jumper (JP1) to set interrupt levels.

Disabling interrupts
JP1

rRa|O OO0 Q0O O
9 2 4 5 6 7

0000

12 14 15

Figure 4. Disabling Interrupts

PIO-16/16L(PC)V

Chapter 1. Setup

Enabling Interrupts

Use strapping connectors to connect input signals to the interrupt -
levels you want to assign. The assignable interrupt levels are IRQs 3
t0 7, 9 to 12, 14, and 15. Note, however, that IRQs 10 to 15 cannot
be used on PCs with XT (8-bit) buses.

JP1
‘B ARAD
_lqtgo 00
Q0

0 0

10 11 1

RQ

102 (4)
100

o O

(0]

1]

Ra 4 18

Figure 5. Interrupt Settings

Example : To connect SIG1(I02) from the interface board to IRQ10
on the PC/AT as an interrupt request signal, set the JP1 as
shown below :

1BM PC/AT (input module) Extemal O
RQ RQ Copwction

o0 | siargon)
11 0O-- 03 51G2{100)
120 O 04

“Oo O Os

150 QO Qs

®) o o7

Figure 6. Sample Interrupt Settings

PIO-16/16L(PC)V Page 9

Chapter 2. External Connection

Interface Connector

Connecting the Interface Connector

Page 10

To connect an external device to this board, plug the cable from the
device into the interface connector (CN1).

* Connector used
37-pin D-sub connector (Female;
DCLC-J37SAF-20L9 (mfd. by JAE) equivalent
Screw nut : UNC #4-40 (inch screw)
= Applicable connector
JE-233?D-D2(DSCMmfcI. by DDK, Male)
o FDCD-37P (mfd. by HIROSE, Male)
~ar DC-37P-N {mfd. by JAE, Male)

Figure 7. Interface Connector

Optional Cables

Flat cable with 37-pin D-sub connectors at either end :
+ PCB37P-1.5 (1.5m)

« PCB37P-3 (3m)

« PCB37P-5 (5m)

Shielded cable with 37-pin D-sub connectors at either
end:

« PCB37PS-0.5 (0.5m)

*PCB37PS-1.5 (1.5m)

* PCB37PS-3 (3m)

« PCB37PS-5 (5m)

Flat cable with a 37-pin D-sub connector at one end :
« PCA37P-1.5 (1.5m)

* PCA37P-3 (3m)

* PCA37P-5 (5m)

Shielded cable with a 37-pin D-sub connector at one
end :

« PCA37PS-1.5 (1.5m)

» PCA37PS-3 (3m)

+ PCA37PS-5 (5m)

PlO-16/18L(PC)V

Chapter 2. External Connection

Optional Accessories

Screw Terminal : EPD-37

Termination Panel : DTP-3(PC)

Termination Panel : DTP-4(PC)

Signal Monitor for Digital /O : CM-32(PC)E

Interface Connector Pin Assignment

To connect an external device to this interface board, plug it into the
on-board 37-pin connector.

Common minus pinfor — N"h---m _ Common minus pin for
+0/+1 output port — *100-{-- 2 21-}-0 09 — +0/+1 output port
Jot-4- 3 2501
s0port | 1021~ 4 23002 | +0port
(nput) | 193" 2 241003 | (Oulpul)
ios-|- 7 2377004
19817 26{-005
27-(-0 06
— 107-1- 8 28.l-007
' |10 - 10 29_,_.010_
]11' * 11 30....011
+1 port Hg - }g 31---012 | +1 port
(nput) | 114.). 14 3217013 | (Ouipw)
15115 841015
116-1- 16 351018
Common plus pin for — ';E‘ - :; 36-1-017 -
+0/+1 input port NC.-|-19 TP - %TTS‘T{SH‘%&# for

*100 and *102 are also used as inferrupt signals
Figure 8. Interface Connector Pin Assignments

P10-16/16L(PC)V Page 11

Chapter 2. External Connection

Input Circuit and Output Circuit

Page 12

Input Circuit

The input circuit of this board is illustrated in following Figure. The
on-board photocouplers isolate internal input circuits from outside
devices. The input channels are current source type signals. You
need an additional power supply that is isolated from the PC system
to drive these insulation circuits. When you use a 12VDC power,
each input channel will consumes about 4mA current; when 24VDC
external power supply is selected, each input channel will consumes
about 8mA current.

Extarnal
Board <}— ——Device

5.1kQ ! Plus
3k t{om'nor
Q O

Wg') é - __cl ut‘E 56—

Photocoupler ! Pin

External

= gowelr

= Su
bdizl

Vee ~24V

5.1kQ
ek

] Photocoupler
/ .

Figure 9. Input Circuit

"

g

SRR o Sy
oF

1
r

PIO-16/16L(PC)V

Chapter 2. External Connection

QOutput Circult

The output circuit of this board is illustrated in following Figure.
The output channel is a photocoupler-insulated open-collector type
(sink type). You need an additional power supply that is isolated
from the PC system to drive these insulation circuits. The maximum
output current rating is 200 mA per channel or 2 A per common (16
output channels share a common power supply).

Note!
There are not surge voltage protection circuits on board for protect-
ing owsput transistors. To drive inductive loads such as relays and
lamps by this board, therefore, a measures against surge voltage
must be taken on the load side.

12k i

"i Boardg . —P> Devie
1k J—w,_.._._d- H—e

£
_UO
*
e

e
o
H
P -

-
I Y-
=
=
&

.

Figure 10. Output Circuit

PIO-16/16L(PC)V Page 13

Chapter 3. /O Port Bit Assignment

I/0 Port Bit Assignment

This board is accessed by the PC through two I/O ports. A group of
eight external digital signals (input and output signals) connected to
the on-board connector is assigned to each port.

Input Port Bit Assignment
The bits in input ports are assigned as shown below:

p7 D6 D5 D4 D3 D2 D1 DO
{nput group 0 {+0 port)

107 [106 [105 | 104} 103} 102 | 101 | 100

g)@ | (71w] (5]l

Input group 1 (+1 port)

mzlne | s [nafna| 2|t o

(171 | (16)] [151| (141] (18]] (121 [111] (10

/O base
address gy

+1H

1xx Is an input signal name; numbers in brackets []
are connector pin numbers.,
100 and 102 can also serve as interrupt signals.

Figure 11. Input Port Bit Assignment

When input data is "ON," the corresponding bit contains "1." If the
data is "OFF," the bit contains "0."

Example : Check whether 107 is "ON" when the I/O base address is
300H.

(1) BASIC (MS-DOS version)
DATA%=INPUT (&H300}
IF (DATA® AND &HBO)=&HB0 THEN +e»
(2) Microsoft C or C++ (MS-DOS version)

data_in=inp (0x300);
if (data_in & 0xBO} ese»

Page 14 PIO-16/16L(PC)V

Chapter 3. VO Port Bit Assignment

Output Port Bit Assignment
The bits in output ports are assigned as shown below:

D7 D6 D5 D4 D3 D2 Di_ DO
/O base +OM Qutput group 0 {+0 port}
address 007] 008] 005 004 [003] 002[001 OO0
[28] | [27] | [26] | [25] | [24] | [23] | [22] | [21]

+1H Output group 1 (+1 port)
017|016| 016] 014| 013| 012|011 | 010
136] | (35] | [34) | [33] | [32] | [31]] [30]] [291

Oxx Is an output signal name; numbers in brackets []
are connector pin numbers.

Figure 12. Qutput Part Bit Assignment

When 1" is output to a bit, the corresponding output data is set to
"ON." If "0" is output to the bit, the data is set to "OFF."

Example : Setonly O07 to "ON" when the I/O base address is 300H.

(1) BASIC (MS-DOS version)
OUT &H300,&H80

(2) Microsoft C or C++ (MS-DOS version)
outp(0x300, 0x80) ;

PIO-16/16L(PC)V Page 15

Chapter 4. Board Specifications

[

I 1
I 1
I 1
I]
| Proto- External di t
i] coupler K ¥ Shamel groun &
oS || !
1 I
I]
i]
] 1
I I
I 1
Addre o L Pholo- A_.——-—|E‘lllmli | inpul
{MEEE;'C[D colnddlmi coupler [T (8-cha ﬂﬂ‘;ampf]
I cireuit I
] I
3 i |
]]
4 1]
]]
E]]
¢ ox ' Control |, '
2 o Cp| it (— i
| meser | .
g | :
:r Photo- :
Data bus Data coupgler | | xternal dightal output
(©7~D0) 7 driver & ?Mmupm
: sletor :
i I
1 t
1 t
i '
L] 1
i 1
IRQ3~7 L ~ " External digital cutput
iAas~12 <3| Control L v :>{n-:hannnl. group 1)
FRQi4, 15 | . H
]]
(]]
\/) PIO-BLPCIV |
Figure 13. Block Diagram
Page 16 PIO-16/16L(PC)V

Chapter 4. Board Specifications

Specifications
Table 2. lists the major specifications of this board.

Table 2. Specifications

_lam Specification
Input systam . rinsulated cument
Input resistance [3k01
pat |l O cumant (3.4 mA or more
section || OFF curren! 0.16 mA or less

Is fincluding 2

Number of input signal ch ol

Note: A set of 18 channels share cne common power supply.

Responss time 1 ms of lass
O P -insulatod cumant sink- k(N
Rafings |Wihstand 35 VDC (Max.}
Output Output curment 200 mA max channal) (2 A max per common pin
section |Number of output channels 18 {4 set of 16 channels shams one common power SUPplY.)
38 time. 1 ms or less

Commoen
secfion

VO address ‘B bits x 2 ports occupied
Intarmupts Some of IR0 3 107, 5 10 12, 14, and 15 {up 1o 2 IAGs at a tme)

Inbermupt generated at High->Low edge

Extemal circuit power supply

12 1o 24 VOC (£15%)

Note: 4ﬂmﬂvh8m\"2'ﬂm
Cument consumpton DOSV_50m (Mex)
o] ing condiions 0 to 50C, 20 Io 60% condansation]
(Connacting distance About 50 m on environmen

160.0 x 122.0 x 18.5mm

Board dimensions
|de m‘E

4

PIO-16/16L(PC)V

Page 17

Appendix

A. Interrupts on the PC/AT Series

Some boards provided by CONTEC can use the interrupt function of
the PC. If you use these boards to use the interrupt function, refer to
the information in this appendix for appropriate interrupt servicing.
The PC/AT and compatibles provides interrupt signals at interrupt

levels of IRQs 3 to 7, 9 to 12, 14, and 15. (The XT bus machines
supports IRQs 2 to 7.}

Although expansion bus interrupt levels are assigned to individual
peripheral devices, expansion boards can use other interrupt levels
not occupied on the system,

Note that appropriate processing is required for setting up of the PC
environment, restoring the interrupt environment, and for response in
interrupt handlers before you can usc the interrupt function of the
PC/AT or compatible,

Page 18 PIO-16/16L(PC)V

Appendix

Interrupt Levéls and Interrupt Vectors

Interrupt Levels

The PC/AT and compatibles have a master/slave configuration with
two interrupt controllers (8259). As illustrated in Figure 14, expan-
sion bus IRQs 3 to 7 are assigned on the master side while IRQs 9 to
12, 14, and 15 are assigned on the slave side. Since programs using
the interrupt function control the interrupt controllers, processing is
different depending on each interrupt level and between the master
and slave sides.

8259 (master side)

CPU—— IRQ IR0 [~ IRQO Timer

IR1 |———>RQ! Kayboard

IR 2 IRQ2

IR3 [——— Expansion bus IRG3 <Senal port 2>

IR 4 |—— Expansion bus IRQ4 <Serial port 1>

IRS | Expansion bus IRQ5S <Parallel port 2>

IR & [— Expansion bus IRQS <Floppy disk drive>

IR 7 | Expansion bus IRQ7 <Parallel port 1>

I_mu(um.m:

IRG IR0 IRQB Aeal-time clock

R 1 pansion bus [RQ9 <5 ,
IR 2 bus RGO <F
IR 3 |—— Expansion bus IRG1 <Reserved>
IR 4 Expansion bus IRQ12 <M
IR & Ina13 <Math
IR 6 {—— Expansion bus IRQ14 <Hard disk drive>
IR7 pansion bus IRQ1T5 <R d

Note: Devices in angle brackets < > am standard peripheral devices to
mhmal:mn bus interrup! levels am assigned.

Figure 14, Interrupt Controllers

PIO-16/16L(PC)V Page 19

Appendix

Note!

Page 20

« On the PC/AT and compatibles, the board can use IRQ9 but cannot
use IRQ2,

« The interrupt controller accepts an interrupt at the rising edge
from the LOW to HIGH level of the interrupt request signal from
the board.

» Those interrupt levels cannot be used which have already been
used for internal components of the PC or its peripheral devices.

. Dtb’erem boards cannot share the same interrupt level.

Interrupt Vectors

Interrupt levels and their respective interrupt service routines are
associated with each other in an interrupt vector table. The vector
table is 1K byte, starting at the low-order address (zero address) in
memory. Each vector in the table contains the 4-byte starting ad-
dress of an interrupt service routine, Table 3, below lists the ad-
dresses and vector numbers assigned for interrupt controllers in the
interrupt vector table.

Table 3. Addresses and Vectors Assigned in Interrupt Vector

Table
Address Vector No. | %ﬁm
0020H to 0023H oBH Timer (IRQ0)
0024H to 0027H 0oH Keyboard (RQ1)
Master side | 0028H 1o 0028H 0AH . (IRQ2)
002CH to 002FH 0BH [Serialport2 {IRQ3)
0030H to 0033 0CH |Seralport 1 (IRQ4)
0034H to 0037H " ODH |Parael port2 (IRQS)
0038H to 003BH OEH |Floppy diskdive (IRQS)
DO3CH to 003FH OFH___jParallel port 1 (IRQ7)
01COH 1o 01C3H T0H Real-ime clock (IRQS)
01C4H 0 01C7H 7iH |Software interrupt {IRQ9)
01C8H 1o 01CBH 72H Resenved (IRC110)
Stave sida | 01CCH to 01CFH 73H Reserved (IRQ11)
0100H 10 01D8H 74H Mousa (IRQ12)
0104H 10 01D7H 75H Math coprocessar (IRQ13)
01D8H 1o 01DBH 76H Hard disk drive (IRQ14)
01DCH to 01DFH 7MH Reserved (RQ15)

PIO-16/16L(PC)V

Appendix

Processing for Enabling the Interrupt Function

To execute an interrupt handler in response to an interrupt request
from the board, the interrupt environment of the PC must be set up to
the interrupt handler. When the interrupt handler is executed, the
prescribed response to the interrupt controller is performed. Upon
completion of serving the interrupt, the interrupt environment of the
PC is restored to the original state.

The remainder of this appendix details each process.
(1) Setting up the interrupt environment
1) Details on setting up the interrupt environment

Interrupt environment setup is divided into the following two opera-
tions:

= Setting the interrupt vector table

* Setting the interrupt controllers

Setting the Interrupt Vector Table

Hold the current contents of the interrupt vector table and set the
interrupt vector address (start address) of the interrupt handler. Hold
the contents of the current interrupt vector table for the interrupt
levels to be used so that the interrupt environment can be restored
correctly. In the interrupt vector table, then, set the vector address of
the interrupt handler.

PIO-16/16L(PC)V Page 21

Appendix

Setting the Interrupt Controllers

Hold the mask status in IMR (interrupt mask register) of the interrupt
controller, cancel masking set by the IMR, and clear the ISR (inter-
rupt service register).

Hold the current mask status in the IMR for restoration of the inter-
rupt environment. * Then, cancel masking the bit corresponding to the
interrupt level to be used to enable that level of interrupts. Lastly,
clear the ISR, or the interrupt request currently being accepted by the
interrupt controller, to restart receiving interrupt request signals.
Table 4.- shows the correspondence between interrupt levels and
interrupt controller data,

Table 4. Interrupt Levels and Interrupt Controller Data

IMA masking Clearing ISR

Veskorfo. '"mf sornl Port address Dot | Poraddress | Daa

oA oz 002iH FBH | ozt | &H

0BH Ras ooztH FH | omon | e

Masterside | OCH e o021H gFH | oeon | e
0DH IG5 0021H OFH | ooeoH &5H

OEH IRG8 o2iH BFH 0o20H BsH

OFH IRQT o21H TFH 0020H &7TH

H 1Ro% 0ATH FOH| ooAoH | emH

72 Rato 00ATH FeH | comoH | ez

Svesde | 7aH Rat 0OATH | oson | e
T4H Ra12 00ATH EFH DOADH 8H

76H 1RO14 OOATH BFH | ooaH | esH

7 IRQ1S OOATH 7ei | ooson | e

Page 22

Disable interrupts in advance to prevent interrupts from being gener-
ated when the vector address of an interrupt handler is set in the
interrupt vector table, when masking set by the IMR is canceled, or
when the ISR is cleared. After interrupt controller setup has all been
completed, enable interrupts.

Mask

A mask is the character or bit pattern for changing or isolating infor-
mation on a specific bit location in another bit pattern.

IMR (interrupt mask register)

The IMR holds the bit corresponding to the interrupt request line to
be masked. The interrupt request for the IR input corresponding to
the bit set in the IMR is therefore suspended.

PIO-16/16L(PC)V

Appendix

ISR (interrupt service register)

The ISR holds the interrupt level currently being serviced. The ISR
is updated the moment the command for terminating the current
interrupt is issued.

PIO-16/16L(PC)V Page 23

Appendix

Page 24

2) Sample programs for setting up the interrupt environment

Example for the master side (IR@5) (Microsoft Macro
Assembler)

The sample program shown below specifies the vector number (Odh)
for IRQS, executes an MS-DOS function call to get the contents of
the vector table, then stores the results in variables. After disabling
interrupts, the program executes the MS-DOS function call to update
the vector table to the vector address of the interrupt handler,

The program inputs the mask status in the current IMR from the port
address (0021h) on the master interrupt controller and stores it in a
variable. To cancel masking the bit corresponding to JRQS, the
program cutputs the AND with (DFh) and enables IRQS. The pro-
gram then outputs (65h) to the port address (0020h) on the master
interrupt controller to clear the ISR. After interrupt controller setup
has all been completed, the program enables interrupts.

To change the interrupt level to IRQ 2, 3, 4, 6, or 7, edit the italic
portions of the program listing according to Table 4.

mov al, Odixs ;Specify vector number

mov ah, 35h ;Gat current interrupt vector

int 2ih MS-DOS system call

mov orgvect off, bx :Stora offset address

mov orgvect_seg, as iStore segment address

eli ;Disable interrupts

mov da, inthandler_seg : Segr address of interrupt han
dler

mov dx, inthandler offset ;0ffsot address of interrupt handler

mov 1, Odh 1 Specify vector number

mov ah, 25h iChange interrupt vector

int 21h ;MS-DOS system call

in al, 0021h ;Input mask status in current IMR on
mastor side

mov rgimr_ma, al ;Store mask status in current IMR on
master side

and al, 0dfh i Cancel ki of ponding bit

eut 0021h, al jCancel masking by IMR on master
side

mov al, 65h ;Specify clear data for ISR on
master side

out 0020h, al ;Clear ISR on master side

sti

jEnable interrupts

PIO-16/16L(PC)V

Appendix

Example for the master side (IRQ5) (Microsoft C or C++)
The sample program shown below declares the pointer variable with
an interrupt property to hold the current interrupt vector. The pro-
gram then uses a _dos_getvect() function to specify the vector num-
ber (0dh) of IRQS, get the contents of the vector table, and to store
the results in variables. After disabling interrupts, the program
executes a _dos_setvect() function to update the vector table to the
vector address of the interrupt handler.

The program inputs the mask status in the current IMR from the port
address (0021h) on the master interrupt controller and stores it in a
variable. To cancel masking the bit corresponding to IRQS, the
program outputs the AND with (DFh) and enables IRQS5. The pro-
gram then outputs (65h) to the port address (0020h) on the master
interrupt controller to clear the ISR. After interrupt controller setup
has all been completed, the program enables interrupts.

To change the interrupt level to IRQ 2, 3, 4, 6, or 7, edit the italic
portions of the program listing according to Table 4.

vold _interrupt_far inthandler{veid);
/* Declare prototype of interrupt handler */
vold {_interrupt_far * orgvect) (wvoid);
/* Pointer variable for holding interrupt
vector */f
orgvect = _dos_gaetvect (0x0d) ;
/* Gat current interrupt vector */
_dicable|); /* Disable interrupts */
dos (0x0d, inthandler);
/* Change interrupt vector */
outp(0x0021, (orgimr_ma=inp(0x0021))&0xdf);
/* Store current IMR on master side and
cancel masking*/

outp (0x0020, 0x65))
/* Clear ISR on master side */
_enable(); /* Enable interrupts */

Note!

Some older versions of Microsoft C cannot use interrupt functions.
Refer to the Runtime Library Reference to check the version in use.

PIO-16/16L(PC)V Page 25

Appendix

Page 26

Example for the slave side (IRQ12) (Microsoft Macro
Assembler)

The interrupt levels (IRQs 9, 10, 11, 12, 14, and 15) on the slave side
are connected to the CPU through the master interrupt controller.
The sample program shown below therefore sets up both of the
master and slave interrupt controllers.

The program specifies the vector number (74h) for IRQ12, executes
an MS-DOS function call to get the contents of the vector table, then
stores the results in variables. After disabling interrupts, the program
executes the MS-DOS function call to update the vector table to the
vector address of the interrupt handler.

After enabling the master interrupt controller, the program inputs the
mask status in the current IMR from the port address (0OAIR) on the
slave side and stores it in a variable. To cancel masking the bit
corresponding to TRQ12, the program outputs the AND with (EFh)
and enables IRQ12. After clearing the ISR on the master interrupt
controller, the program outputs {(64h) to the port address (COAOh) on
the slave side to clear the ISR, After interrupt controller setup has
all been completed, the program enables interrupts.

To change the interrupt level to IRQ 9, 10, 11, 14, or 15, edit the
italic portions of the program listing according to Table 4.

PIO-16/18L(PC)V

Appendix

in

mov

and

in

mav

al, 7éh
ah, 35h
21h

orgvect_off, bx
orgvect_seg, es

ds, inthandler_

Specify vector number

Get current Interrupt vector
MS-DOS system call

Store offset address

Store segment address

Dissble interrupts

Aa of int "

dx, inthandler offset

al, 74h

ah, 25h

21n

al, 21h
orgimr_ma, al

al, ofbh

0021h, al

al, O0alh

orgimr_su, al

al, Oefh
00alh, al

al, 62h
0020h, al

al, 64h
00adh, al

i

handler

Offeet address of interrupt
bhandlex

Spacify vector numbar
Change interrupt vector
MS-DOS system call

Input mask status in current IMR
on master alde

Store mask status in current IMR
on master side

Cancel masking of corresponding
kit

Input mask status in curremt IMR
on slave side

Store mask status in current IMR
on slave side
Store mask status in current IMR
on slave side

Cancel masking of corresponding bikt
Cancel masking by IMR on slave side

sSpecify clear data for ISR on master

side

Clear ISR on master side

Spacify clear datafor ISR on slave side
Clear ISR on slave side

Enable interrupte

PIO-16/16L(PC)V Page 27

Appendix

Page 28

Example for the slave side (IRQ12) (Microsoft C or C++)
The interrupt levels IRQs 9, 10, 11, 12, 14, and 15) on the slave side
are connected to the CPU through the master interrupt controller.
The sample program shown below therefore sets up both of the
master and slave interrupt controllers.

The sample program shown below declares the pointer variable with
an interrupt property to hold the current interrupt vector. The pro-
gram then uses a _dos_getvect() function to specify the vector num-
ber (74h) of IRQ12, get the contents of the vector table, and to store
the results in variables, After disabling interrupts, the program
executes a _dos_setvect() function to update the vector table to the
vector address of the interrupt handler.

After enabling the master interrupt controller, the program inputs the
mask status in the current IMR from the port address (00A1h) on the
slave side and stores it in a variable. To cancel masking the bit
corresponding to IRQ12, the program outputs the AND with (EFh)
and enables IRQ12. After clearing the ISR on the master interrupt
controller, the program outputs (64h) to the port address (00AOh) on
the slave side to clear the ISR. After interrupt controller setup has
all been completed, the program enables interrupts.

To change the interrupt level to IRQ 9, 10, 11, 14, or 15, edit the
italic portions of the program listing according to Table 4.

wvoid —interrupt_far inthandler (void):
/* Declare prototype of intarrupt handler */
void (_interrupt_far * orgvect) (void);

/* Pointer variable for holding interrupt vector */

orgvect = _dos_gotveckt(0x74);
/* Gat current interxupt vector */
_disable{ }); /* Disable interrupts */
dos t{0x7d, inthandler);
/* Change interrupt vector */
outp [0x0021, (orgime_ma=inp (0x0021))&0xfb);
/* Store current IMR on master side and cancel
masking*/
outp(0x00al, [orgimr_su=inp (0x00al)) &0xel) ;
/* Store current IMR on slave side and cancel

masking*/
outp(0x0020, 0x62); f* Clear ISR on master side */
outp(0x00a0, Ox64); /* Clear ISR on slave side */
—enable();: /* Enable interrupts */

PIO-16/16L(PC)V

Appendix

(2) Restoring the interrupt environment
1) Details on restoring the interrupt environment

Restoration of the interrupt environment is divided into the following
operations:

» Restoring the interrupt controller

« Restoring the interrupt vector table

Restoring the Interrupt Controller

Restore the mask status in the IMR of the interrupt controller to the
previous state existing prior to cancellation of masking. Set the IMR
mask status preserved since cancellation of masking. Disable inter-
rupts in advance to prevent interrupts from being generated when the
interrupt vector table is set again or when the IMR mask status is
restored. After interrupt controller setup has all been completed,
enable interrupts.

Restoring the Interrupt Vector Table

Restore the interrapt vector table to the state existing before the last
update. Set that content of the interrupt vector table which has been
preserved since the last update as information corresponding to the
interrupt level to be used.

2) Sample programs for restoring the interrupt environment

Example for the master side (IRQ5) (Microsoft Macro
Assembler)

After disabling interrupts, the sample program shown below outputs
the pre-update IMR mask status 1o the port address (0021h) on the
master interrupt controller. The program then specifies the vector
number (Odh) for IRQS and executes an MS-DOS function call to
restore the contents of the vector table. After restoration has all been
completed, the program enables interrupts.

To change the interrupt level to IRQ 2, 3, 4, 6, or 7, edit the italic
portion of the program listing according to Table 4.

cli ; Disable interrupts

mov al, orgimr_ma ; Mask status of pre-update
IMR on master side

out 0021h, al ; FRaestore masking in IMR on
raster side

mov ds, orgvect_seg ; Pre-update segment address

mov dx, orgvect_off ; Pre-update offset address

mov al, odh : Specify vector number

mov ah, 25h ; Restore interrupt vaector

int 21h ; MS-DOS system call

sti ; Enable interrupts

PIO-16/16L{PC)V Page 29

Appendix

Page 30

Example for the master side (IRQ5) (Microsoft C or C++)
After disabling interrupts, the sample program shown below outputs
the pre-update IMR mask status to the port address (0021h) on the
master interrupt controller, The program then executes a
_dos_setvect() function to restore the contents of the vector table to
the pre-update values. After restoration has all been completed, the
program enables interrupts.

To change the interrupt level to IRQ 2, 3, 4, 6, or 7, edit the italic
portion of the program listing according to Table 4.

_digable() /* Disable interrupts */
outp{0x0021, orgimr_ma); /* Restore rasking in

MR on master side */
_dos_setvect (0x0d, orgvect): /* Restore interrupt vector */
~enable()¢ /* Enablo interxzupts */
Example for the slave side (IRQ12) (Microsoft Macro
Assembler)

After disabling interrupts, the sample program shown below outputs
the pre-update IMR mask status to the port address (0OA1h) on the
slave interrupt controller. The program then specifies the vector
number (74h) for IRQ12 and executes an MS-DOS function call to
restore the contents of the vector table. After restoration has all been
completed, the program enables interrupts.

To change the interrupt level to IRQ 9, 10, 11, 14, or 15, edit the
italic portion of the program listing according to Table 4.

eld + Disable interrupts

mov al, orgimr_su ; Mask status of pre-update IMR
on clave side

out 00Alh, al ; Restore masking in IMR on slave
ocide

mov ds, orgvect_seg ; Pre-update segment address

mov dx, orgvect_off ; Pra-update off dd

mov al, 74h ; Specify wector number

mov ah, 35h ; Restore interrupt vector

int 21h : M5-DOS system call

sti ; Enable intexxupts

PIO-16/16L(PC)V

Appendix

Example for the slave side (IRQ12) (Microsoft C or C++)
After disabling interrupts, the sample program shown below outputs
the pre-update IMR mask status to the port address (Q0A1h) on the
slave interrupt controller, The program then executes a
_dos_setvect() function to restore the contents of the vector table to
the pre-update values. After restoration has all been completed, the
program enables interrupts.

To change the interrupt level to IRQ 9, 10, 11, 14 or 15 edit the italic
portion of the program listing according to Table 4.

_disabla(); /* Disable interrupts */

outp({0x00al, crgvect): /* Restore masking in IMR on slave
aide */

_dos_gotvect (0x7d, orgvect); I int D =/

~enable{); /* Enable interrupts */

PIO-16/16L{PC)V Page 31

Appendix

Page 32

(3) Processing of interrupt handler
1) Details on processing of an interrupt handler

Processing of an interrupt handler is divided into the following
operations:

» Enabling upper-level interrupts

« Saving registers

+ Interrupt handling

« Response to the interrupt controller

* Restoring the registers

» Returning from the interrupt handler

Upon starting execution of an interrupt handler, enable upper-level
interrupts in consideration of operations of other programs so that
upper-level interrupts can be accepted even during execution of the
interrupt handler. Save the registers used by the interrupt handler
and execute the process of the interrupt handler itself. When that
process has been completed, perform response to the interrupt con-
troller to notify it of termination of interrupt handling. Lastly, re-
store the registers used and return to the process prior to execution of
the interrupt handler.

2) Sample programs for processing of interrupt handler
Example in Microsoft Macro Assemble

sti ;Enable uppar-level interrupts
;8ave reglsters

L]
§
RRREE

push as
[tnterrupt handling |
Illupcmu to interrupt controller

pop ;Restore registers
pop
b4
pop
PP
Pop
iret ;Return from interrupt handler

EFRERR

PIO-16/16L(PC)V

Appendix

Example in Microsoft C or C++

void _inrerrupt_far inthandler(veid)
i
_anable(}; /*Enable upper-level interrupts*/
Interrupt handling
to interrupt controller

)

(4) Response to interrupt controller

Upon completion of interrupt handling, perform response to the
interrupt controller to notify it of termination of interrupt handling.
‘This processing differ depending on whether the interrupt level used
is on the master or slave side.

1) When the interrupt level used is on the master side

If the interrupt level (IRQ 2 to 7) on the master side has been used,
notify only the master interrupt controller. Send EOI (End Of Inter-
rupt) to the interrupt controller to reset the bit corresponding to the
interrupt service currently in process.

Example for Response (Microsoft Macro Assembler)

mov al, 20h :9pecify data for EOI
out 002¢h, al ;Send BOI to master side

Example for Response (Microsoft C or C++)
outp(0x0020, 0x20); /* Send EOI to mastar aide */

EOI (End Of Interrupt)
EOI notifies the interrupt controller of termination of interrupt ser-
vicing to reset the interrupt service status.

PIO-16/16L(PC)V Page 33

Appendix

Note!

Page 34

2) When the interrupt level used is on the slave side

The interrupt levels (IRQs 9, 10, 11, 12, 14, and 15) on the slave side
are connected to the CPU through the master interrupt controller,
The interrupt handler therefore performs response to both of the
master and slave interrupt controllers, The interrupt handler sends
EOI (End Of Interrupt) to each interrupt controller to reset the inter-
rupt controller bit corresponding to the interrupt service currently in
process.

Note, however, that if any interrupt request other than that currently
being serviced on the slave side has been left, response to the master
interrupt controller is not performed. Check whether any other
interrupt request has been left, then perform prescribed processing.

Example for Response (Microsoft Macro Assembler)

mov' al, 20h ;jpecify data for EOI
out 00alh, al ;Send EOI to slave side
in al, 02efh ;Reserve interrupt controller

recovery time

mov al, Obh :Input data to ISR on slave side
cut Q0ath, al jSend command to slave side
in al, 02efh ;Resorve interrupt controller
recovery time
in al, 00alh ;Input data to ISR on slave side
or al, al ;Chack for any other interrupt request
jnz PEND
mov al, 20h iSpecify data for EOI
out 0020h, al ;Send EOI to master side
PEND:
Example for Response (Microsoft C or C++)
outp{0x00a0, 0x20); /* Send EOI to slave side */
rt=inp (Ox02ef); /* Reserve interrupt controller
recovery time */
outp{0x00a0, 0x0b); /* Send data input command for

ISR on slave side */
if (inp(0x00a0) '== 0}
/* Input data to ISR on slave side and check forany
other interrupt request */)
outp (0x0020, 0x20); /* Send EOI to master side */

“in" for an empty port reserves a recovery time of at least 0.5 micro-
second. The above example reads the COM4 scratch register.

PIO-16/16L{PC)V

Appendix

B. LSI Recovery Time

Due to the ever higher CPU clock rates used in PCs, restrictions
apply when controlling a peripheral LSI device by software. Table
12 lists the LSIs used on CONTEC boards which require special
consideration when accessing. Take note of the following point
when accessing these LSIs,

In PCs using 1386 or earlier CPUs, software waits (JMP $+2) can be
used fo provide a recovery time when accessing the LS1. However,
software waits cannot be used to provide a recovery time in PCs with
a 1486 or later CPU because of the CPU cache memory function.

The following describes one method of providing the recovery time
when using an i486 or later CPU.

In the PC/AT and compatible computers, executing an IN instruction
for the port at /0 address 2EFh (COM4 scratch register) takes a
minimum of 0.5us. As this time does not depend on the CPU type or
clock rate, the time can be used to provide the recovery time. After
accessing any of the devices listed in Table 5, execute the IN instruc-
tion for the 2EFh port the required number of times to provide the
recovery time,

Table 5. Number of Times the IN Instruction Must be
Executed for the 2EFh Port After Accessing the LSI

LS! Device Ouigut ngut
18237 or equivalent None None |
9254 or equivalent Once Once
| 18255 or equivalent Once Once
i8259 or equivalent Once Once
NS16550 or equivalent Once Once
uPD7210C Once None |

Example program (for accessing an 18254 or equivalent)
*Microsoft Macro Assembler

OUT DX, AL ; hAccess to the 18254

IN AL, 2EFH ; Execute IN AL, 2EFH once to provide
the recovery time

*Microsoft C/C++

outp(port, byte); /* Access to the iB254 */

rt=inp{0x2ef); /* Execute rt=inp(0x2ef); once to

provide the recovery time */

PIC-16/16L(PC)V Page 35

Appendix

C. Sample Programs

Sample Input Program in Q-BASIC
This program is written in Q-BASIC, The program inputs data from
individual ports and displays the values in hexadecimal on the
screen.

Specification

The program inputs data from the 0300H, 0301H, 0302H, and
0303H ports and displays their values on the screen. This board only
occupics two ports; the input data at 0302H and 0303H are FFH.

Preparation
Perform the following preparation before you can run the program.

(1) Remove all strapping connectors from the JP1 because the pro-

gram use any interrupt.
(2) Set the port address to 0300H using the DIP switches (SW1 and
SW2) as shown below:
SW1 Sw2
- NM T WD @ — 00 % WO~ oD
[T TR e
A/ — A
o] o o

Mrepresents the ON/OFF selector for each bit.
Figure 15. DIP Switch Setlings

(3) Leave the JP2 set by factor default (connected between terminals
2 and 3).

B represents a jumper.

Jrz
Figure 16. Function Select Jumper Setting

Page 36 PIO-16/16L{PC)V

Appendix

Display Screen and Flowchart
(1) Display screen

L L T

L Bytc Data Input Sample .

L L e L]

FORT INPUT DATA D7 D6 D5 D4 D3 D2 D1 DO
0300H ARH i 0 1 0 1 0 10
0301H 55H ¢ 1 0 1 0 1 0 1
03020 FFH 11111111
0303H FFH 11 31 1 1111
CONTINUE --=> PRESS ANY KEY

END ---> PRESS ESC KEY

(2) Flowchart

Figure 17. Flowchart for Sample Input Program

PIO-16/16L(PC)V Page 37

Appendix

. LA AL LS LA L LA
. * Sample Program *
' - data input Ver 1.0 *

. AREARRA AR AR A AR RN wah

CLS : WIDTH 80, 25
DIM IN.DATA{4), BIT(B)
SETPCRT = &H3IO0Q

LOCATE 3, 20: PRINT "*%**
LOCATE 4, 20: PRINT ** Byte Data Input Sample -
LOCATE 5, 20: PRINT **weessckswasinsa SRR RARA AR

SRR R

FORJ = 0 TO 7: BIT(JT) = 2 ~ J: NEXT J

LOOPL:

LOCATE %, 17: FRINT “port input data D7 Dé D5 D4 D3 D2 D1
Do '

LOCATE 19, 25: PRINT "End -==> Pugsh ESC key"

LOCATE 18, 25: PRINT "Input ===> Push any key*
WAITL:

X$ = INKEYS: IF X$ = ** THEN GOTO WAITL ELSE IF ASC(X$) = &H1B
THEN GOTO PEND

' EERR AR

' . Input data .

. R e e e T

FORI =0TO3
IN.DATA(I) = INP(SETPORT + I)
LOCATE I + 10, 17
FRINT USING "& & *; RIGHTS (000" + HEXS |SETPORT
+ I), 4); RIGHTS('0" + HEXS(IN.DATA(I}}, 2}
FOR J = 7 TO 0 STEP -1
IF (IN.DATA(I) AND BIT(J)) <> 0 THEN PRINT * 1"; ELSE
PRINT = 0O
NEXT J
HEXT I
LOCATE 18, 25: PRINT *Continue ---> Push any key*
WAITZ:
X% = INKEY$: IF X§ = "" THEN GOTO WAITZ ZLSE IF ASC(X§) = &H1B
THEN GOTO PEND

FOR I = 10 TO 13: LOCATE I, 17: PRINT SPACES (60): NEXT I
GOTO LOOPL

PEND:
END

Page 38 PIO-16/16L(PC)V

Appendix

Sample Input Program in Microsoft C

This program is the Microsoft C version of the sample program
provided in "Sample Input Program in Q-BASIC." Since the C
version is the same as the Q-BASIC version in specification, make
the same switch and jumper settings as those made for the Q-BASIC
version. The two programs are also the same in display scrcen and

flowchart.
_j" AARAARRE . tt-tt.ttttiilttit.f
I SAMPLE PROGRAM »

/* MS-C DATA INPUT VER 1.00 %/

T e R LT L

#include<stdio.h>
#include<conio.h>
#include<dos.h>
#include<math.h>

#define cls() printf("\033(23%)
#define locatolx,y) princf(*\033 [%d; 8dH", y+1l, x+1)
main(}

[
unsigned char a;
unsigned portadd = 0x0300;
unsigned char A[4], Bit[8];
char HOW DO = '1*;
char 1.3

clsfl;

1°=.=.(20'3].. “‘nt!('.lQOl‘lOl!tll‘.ltttitilllllllitttiﬂ\n-.i
locate(20,4); printf("* Bytc Data Input Sample *\n");
locata(20,5); Pprintf(r+rassssansensssnssassraddnsaransaint),

locate(17,9);
printf(*port input data D7 D6 DS D4 D3 D2 D1 DO\n");

while (HOW_DO I= Oxlb)
{
locate(25,18);
printf(* Input =-===> Push any key\n"):
locate(25,19);
printf(*End -=--> Push ESC key\n');
for (i=0; i<=d; i++)
{
locate (16,10+1) ¢
printf (*)
]
HOW_DO = getchi):

if (HOW_DO 1= Oxlhb)
i

PIO-16/16L{PC)V Page 39

Appendix

for (i=0; i<=d; i++)
(

a = 0xB0;

Afi] = inp (portadd + 1)/

locate(17,10+1);

printf (" xH\n"*, portadd +i, Afil):

for (3=7; 3»=0; j--)
{
if ((A[L1] & a) > 0) Bitfi] = 1;
else Bit(]] = 0;
locate(39+(7-3)*3,10+1);
printf(*%x °,.Bit(jl):
a = [a>>1);
]
}
locate(25,18);
printf(*Continue =---> Push any key\n®};
HOW_DO = getch();
}
]
els();

Page 40 PIO-16/16L(PC)V

Appendix

Sample Output Program in Q-BASIC

This program is written in Q-BASIC. The program inputs hexadeci-
mal data from the keyboard, outputs the data in individual ports, then
display the values in hexadecimal.

Specification

When data to be output to the 0300H, 0301H, 0302H, and 0303H
ports is entered in byte units from the keyboard, the program outputs
the data to the individual ports. This boad only occupies two ports;
the output data to 0302H and 0303H are made invalid.

Preparation
Perform the following preparation before you can run the program.

(1) Set the port address to 0300H using the DIP swiiches (SW1 and

SW2) as shown below:
SW1 SW2
-0 nO~® N MWD~ oD
[T [Ty
[3 [1] 0

M represents the ON/OFF selecior for each bik.
Figure 18. DIP Switch Settings

(2) Leave the JP2 set by factor default {(connected between terminals
2 and 3).

JP2 [represents a jumper.

Figure 19. Function Select Jumper Setfing

PIO-16/M16L{PC)V Page #1

Appendix

Display Screen and Flowchart

(1) Display screen
* Byte Data Output Sarple .

AR R R AR AR R R

ENTER CUTFUT DATA FOR 300H PORT (00~FF) --> AA
ENTER OUTPUT DATA FOR 301H PORT (00~FF) --> 5§
ENTER CUTFUT DATA FOR 302H PORT (00~FF) =--> 00
ENTER CUTPUT DATA FOR 303H PORT (00~FF) =-=> 00

DATA HAS BEEN OUTPUTTED.

CONTINUE ---> PRESS ANY KEY
BD ---> PRESS ESC KEY
(2) Flowchart

Key in outpul data

Figure 20. Flowchart for Sample_Output Program

Page 42 PlO-16/16L(PC)V

Appendix

ARAFARAERA AR A AR AR R AR
ol Sample Frogram *

- Byto data output Var 1.0 *
.. LLEEE LR R LA Ll

EEAR R

CLS : WIDTH BO, 25

LOCATE 3, 20: PRINT "teshdsdtdbdsasnnnny
LOCATE 4, 20: PRINT °* Byte Data Output Sample .
LOCATE 5, 20: PRINT **éswmsssasesvaddeds CLEE LT

whmkmk R

" L e e e T

! b Data input by keyboard *

" dERRE R AR AR AR AR

LOCATE 9, 15: PRINT *ENTER a 2-digit Hex number at 3J00H port --

_
LOCATE 10, 15: PRINT *ENTER a 2-digit Hex number at 301H port --
>
LOCATE 11, 15: PRINT *ENTER a 2-digit Kex number at 302H port --
> "
LOCATE 12, 15: FRINT *ENTER a 2-digit Hex number at 303H port --
_—
WHILE (1)
PDOS = **
WHILE (LEN(PDOS) < 2)
LOCATE 9, 60: LINE INFUT FDO$ "300H port
DATA INPUT
WEND
LOCATE 9, 60: PRINT RIGHTS("0* + PDOS, 2); SPACES(S)
PDO = VAL("&H" + RIGHTS (FDO%, 2))
PDL§ = **
WHILE (LEN(PD1$) < 2)
LOCATE 10, 60: LINZ INPUT PD1§ '301H port
DATA INPUT
WEND
LOCATE 10, 60: PRINT RIGHTS("0" + PD1§, 2); SPACES(5)
PDL = VAL{*&H* + RIGHTS(PD1S, 2))
PD2§ = ="
WHILE (LEN(FD25) < 2)
LOCATE 11, 60: LINE INPUT PD2% "302H port
DATA INPUT
WEND
LOCATE 11, 60: FRINT RIGHTS("0* + PD25, 2); SPACE§(S)
FD2 = VAL(*&H" + RIGHTS{PD25, 2})
PD3§ = "
WHILE (LEN({FD35) < 2)
LOCATE 12, 60: LINE INPUT PD1§ '303H port
DATA INPUT
WEND

LOCATE 12, 60: PRINT RIGHTS("0* + PD35, 2); SPACES(S)

PIO-16/16L(PC)V Page 43

Appendix

PD} = VAL("&H" + RIGHTS(PD3§, 2))

LOCATE 18, 25: PRINT *Output ---> Push any key*
LOCATE 19, 25: PRINT “End ---> Push ESC key*
WAITL:
X$ = INKEY§: IF X§ = '" THEN OOTO WAIT1 ELSE IF ASC(X§) = &H1B
THEN GOTO PEND
'WAITING FUSH KEY

. LTI T T T

" * Output data -

EEEEA AR R AR

QUT &H300, PDO: *300H port's data output
OUT &H3I01, PD1: *301H port's data output
OUT &H3I02, FD2: '302H port's data output
OUT &E303, FD3: *303H port's data output

LOCATE 18, 25: PRINT "Continue ---> Push any key"
WAITZ:

X$ = INKEYS$: IF X$ = ** THEN GOTO WAITZ ELSE IF ASC(X$) = &H1B
THEN GOTQ PEND

‘WAITING FUSH KEY

FOR I = 18 TO 19: LOCATE I, 25: PRINT SPACES(30): NEXT I
*DELETE COMENT

FOR I = 9 TO 12: LOCATE I, 6€0: PRINT SPACES(10): NEXT I
"DELETE COMENT
WEND
PEND:

END

Page 44 PIO-16/16L(PC)V

Appendix

Sample Output Program in Microsoft C

This program is the Microsoft C version of the sample program
provided in "Sample Output Program in Q-BASIC." Make the same
switch and jumper settings as those made for the Q-BASIC version.
The two programs are also the same in display screen and flowchart.

franannn s !
" SAMPLE PROGRAM L'l
/* MS-C DATA OUTFUT VER 1.00 */

P LA L LA E LI

#include<stdic.h>
#include<conio.h>
#includa<dos.h>

#define off 0
#define on 1

#define cls() printf(*\033[27")
#define locate(x,y) prints(*\033 [%d; vdH", y+1, X+1)
main{}
{
unsigned portadd = 0x0300;
unsigned char pda0,pdl, pd2, pd3;
int E¥]
char HOW_DO = "1';
els();

locate(17,3); printf(*rsescasvsasasssnsatbusrbenatasitiyn);
locate(17,4); printf("* Byte Data Output Sample *\n"});
locate(17,5); printf(* awawaswawint)

locate(15, 9); printf("ENTER a 2-dight Hex number at 300H port -
= ")
i ;.;eamus,mn print? ("ENTER a 2-dight Hex number at 101K port -
- ");

iomuus.n:; printf ("ENTER a 2-dight Hex number at 302H port -
> "

:.;uteus,l!:l: printf ("ENTER a 2-dight Hex number at 303H port -
=> ")

while (EOW_DO != Oxlb)

{
locate(25,16); printf(~ 1
locate(25,17); printf(” "1

locate(60, 9); ascanf("%x",&pd0);
locate(60,10); scanf("%x",&pdl);
locate{60,11); scanf(*%x",&pd2);
locate{60,12); acanf(*%x",&pd3);

PIO-16/16L(PC)V Page 45

Appendix

locate(25,16); printf({"Output ———— Push any key\n");
lecate(25,17); printf{"End -===> Push ESC key\n");
lecate(1,25); HOW_DO = getchil;

Af (EOW_DO 1= Oxlb)

[
outplportadd ,pdo);
outp (portadd+1,pdl);
outp {portadd+2, pd2);
cutp(portadd+3,pd3);

locate(25,16); printf("Continue =-=---> Push any key\n®"):
locate(1,25); HOW_DO = getch();

for (L =9 ; 1 <= 12 ; i++)

{
locate (60,1) ;printf (* M ¥

Page 46 PIO-16/16L(PC)V

Appendix

Sample Interrupt Program in Q-BASIC
This program registers and uses a machine language program
(Microsoft Mace Assembler) from Q-BASIC as an interrupt process-
ing program.
Specification
The program causes the machine language program to count the
number of interrupts and BASIC to display the count each time an
interrupt signal (IRQS) is generated.

Preparation
Perform the following preparation before you can run the program.

(1) Set the port address to 0300H using the DIP switches (SW1 and

SW2) as shown below:
SW1 SW2
-~ MmN~ -0 T WD~ D
AERANERN
LTS o]THTH
L R, — | W, W—
0 3 [] [1]

W ropresents the ONJOFF selector for each bit.
Figure 21. DIP Switch Settings

(2) Leave the JP2 set by factor default (connected between terminals
2 and 3).

[represents a jJumper,
JP2

Figure 22. Function Select Jumper Setting

(3) Since IRQS is used as the interrupt level, connect SIG1 to IRQS
on the JP1 as shown below:

9345867

12
(W= = m O O(sia)

1011121415
o

Figure 23. Interrupt Jumper Settings

PIO-16/18L(PC)V Page 47

Appendix

Display Screen and Flowchart

(1) Display screen

EE R e R R R R L LRt L e i

- Interrupt Sample b
AR A R wRRA

INTERRUPT COUNTER OF IRQS = 54

END ---> PRESS ESC KEY
(2) Flowchart

Sel 8259 interrupt
mask

-| Clear 8250 ISR

Read memory in
'which interrupt count
has bean ragistarad |

Figure 24. Flowchart for Sample Interrupt Program

Page 48 PIO-16/16L(PC)V

Appendix

. hhARAR N
#* INTERRUPT SAMFLE PROGRAM **
- Ver. 1.00 b

- EAEEAR AR AR AR AR

DIM MBUFF% (&H190): CLS
WIDTH B0, 25: KEY OFF

weak GET SEGMENT wwawe

LOCATE 3, 20: PRINT "**= e
LOCATE 4, 20: PRINT ** Interrupt Sample
LOCATE 5, 20: PRINT * BEARAERRNEA

LOCATE 11, 20: PRINT *Interrupt counter of IRQS ="

LOCATE 18, 20: PRINT *END ---> Push ESC key *

MCHSEG = VARSEG(MBUFFA({0))

SEGH = (INT(MCHSEG AND &HFF00) / &H100) AND &HFF

SEGL = MCHSEG AND &HFF

+ #=wws BT INTERRUPT TABLE ALDRESS

¢+ wxsss STORZ MACHINE LANGUAGE **#%##

DEF SEG = &HO
POKE &H34, &HO
POKE &H35, &HO
POKE &H36, SEGL
POKE &H37, SEGH

DEF SEG = MCHSEG
RESTORE ASM

FOR I = 0 TO 20
READ DAT: POEKE I, DAT

NEXT I

DATA &HFB ' ETI
DATA &HIE i ' POP
DATA &HSO + ' POP
DATA &HS52 3 " PUSH
DATA &HSC, &HCE : ' MOV
DATA &HSE, &HDS ' MOV
DATA &HEB, &HO2, &HO3 @ ' MOV
DATA &HFF, &HO7 : ' INC
DATA &HBO, &H20 ' MOV
DATA &HES, &H20 ' MOV
DATA &HSB : ' POP
DATA &ES8 : ' POP
DATA &HIF : ' POP
DATA &HCF : ' IRET

PIO-16/16L(PC)V

wnmwn

]

A

EX

A, Cs
DS, AX
BX, 302H
WORD PTR [BX]
AL, 20H
20H, AL
BX

AX

ns

Page 49

Appendix

+ #ewes IRT COUNT SET =+=%*

POKE &H303, 0
FOKE &H102, 0

" owEwEn

CLEAR MASK REGISTER *w¥*+
A = INP(&H21)

A = (A AND &HDF}

OUT &H2Z1, A

OUT &H20, &HES

I oARRE Lw? EEEE T
WHILE (A$ <> CHRS[(EH1B))
AS = INKEYS
DEF 526G = MCHSEG
A = PEEK(&H301) * 256 + PEEK(&H302)

LOCATE 11, 47: FRINT A
WEND

' wasss DISABLE INTERRUPT *+74®

A = INP{&H21)
A = A OR EH2D
OUT &H21, A

Page 50 PIO-16/16L(PC)V

Appendix

Sample Interrupt Program in Microsoft C

This program is the Microsoft C version of the sample program
provided in "Sample Interrupt Program in Q-BASIC." Since the C
version is the same as the Q-BASIC version in specification, make
the same switch and jumper settings as those made for the Q-BASIC
version. The two programs are also the same in display screen and

flowchart.

f"ltt'wu - LEE LR LR LA f
A SAMPLE FROGRAM -
F L MS-C INTERRUPT COUNT VER 1.00 */
;ill‘nltt AR AE N f

#include<stdio.h>
#include<conio.h>
#irclude<dos.h>

static unsigned int port = Ox300;
static inkt ent = 0;
static int dat = 0;

#detine cls() princf(*\033[2J")
fdefine locate(x,y) printf (*\033[%d; %dH", y+1, x+1)

wvoid eursor (int m)
{
unien REGS x;
switch(m)
{
case 0:
r.h.ah = 1;
r.h.ch = 0x20;
r.h.el = 0x20;
break;
casa 1:
r.h.ah = 1;
r.h.ch = 06;
z.h.el = 07;
break;
)
int86 (010, &r, &x);
1

void interrupt far intS_c(veid)
(
~disabla(};
ent++;
outp (0x20, 0x20) ;
—enable(};

PIO-16/16L(PC)V Page 51

Appendix

Page 52

void main(void)

int masdat;

els{)s

cursor (0}

105.“{20,3).‘ mint!{l-.ll'.tt.i‘.tiil.ﬁ.t-.‘-.-..nt-tn\nl}’
locate(20,4); printf{"* Interrupt Sample "\n*};

‘Luut.::n'&]; pzmtzt‘tlt.l.tt.t.-l..tlillllt.ttl..-t-t\n-)‘_
locate(20,18);

printf (*End ----> Push ESC key");

locate(20,11);

printf {*Interrupt counter of IRQ5 = 0 ");

_dos_setvect (0xD, [void(interrupt far *) (})int5_c);
masdat = lnop(0x21);

oukp{0x21, masdat & OxDF);

outp(0x20, 0x65);

do
(
locate(48,11);
printf("vd",ent};
)while (kbhit() == 0 || getch() I= Oxib);

outp (0x21,masdat) ;
cursor(1);

PIO-16/16L(PC)V

Appendix

D. Measures Against Voltages

When connecting a load which may generate a surge voltage or
current, for example an inductive load (relay coil) or incandescent
lamp, to digital outputs, suitable protection measures are required to
prevent damage to the output stage or a malfunction due to noise.
Instantaneously interrupting current flowing through a coil including
arelay causes the sudden generation of a high-voltage pulse. If its
voltage exceeds the withstand voltage of the transistor, the perfor-
mance of the transistor may be degraded or it may be damaged. To
prevent this, be sure to connect a surge absorption element when
driving an inductive Joad including a relay coil. Examples of mea
sures against surge voltages are as shown in the Figure 25 below.

MExamples of use of relay colil

Dmé%- % Relay coil :? Relay coi

Y . Zener
H x/ diode

%)

S [—

External power voltage < Zener diode vollage
MExamples of use of lamp

**=-Surge current
prevention resistor

Figure 25. Samples of Surge Voltage Protection

Note! .
The protection circuit will not be effective unless it is installed less
than 50 cm from the load and contact.

PIO-16/16L(PC)V Page 53

Index

B
Block Diagram 16

c
Component Locations 5

F
Features 1
Functions 3

|

/O Addresses 6
Input Circuit 12

Input Port 14
Interface Connector 10
Interrupt Levels 8
Interrupts 18

L
LS| Recovery Time 35

0

Obtain Service 2
Optional Accessories 11
Optional Cables 10
Output Circuit 13
Output Port 15

S

Sample Programs 36
Specifications 17
Surge Voltage 53

w
Warranty 2

Page 54 PIO-16/16L(PC)V

CONTEC Group

JAPAN

US.A.

EUROPE

KOREA

CHINA

TAIWAN

Headquarters

CONTEC Co., LTD.

3-9-31, Himesato, Nishiyodogawa-ku, Osaka 555-0025, Japan

Tel . +81(6) 6477-5219 Fax : +81 (6) 6477-1692
E-mail : intsales@osaka.contec.co.jp

CONTEC MICROELECTRONICS U.S.A. INC.

744 South Hillview Drive, Milpitas, CA 95035 U.S.A.

Tel : +1(408) 719-8200 Fax : +1(408)719-6750
E-mail : tech_ support@contecusa.com

CONTEC MICROELECTRONICS EUROPE B.V.

Binnenweg 4, 2132 CT, Hoofddorp, The Netherlands

Tel : +31(23) 567-3030 Fax : +31(23)567-3035
E-mail : tech_support@conteceu.nl

HYOJIN CONTEC Co., LTD.

Ki-im Bldg. #399, Shindolim-Dong, Kuro-ku, Seoul, Korea

Tel © +82(2)2636-4277/8 Fax : +82(2)2636-4279
E-mail : product@conteck.com

INTERNATIONAL CONTEC TECHNOLOGY CO., LTD.

B-8F, Hua Tong Building, No. B19, Che Gong Zhuang West Road,

Hai Dian District, Beijing 100044, China

Tel : +86(10)8801-8228 Fax : +86(10)8801-8209
E-mail : ict@ict.com.cn

SHANGHAI CONTEC MICROELECTRONICS CORP.

No. 481 Gui Ping Road, Cao He Jing Hi-Tech Park Shanghai, 200233, China
Tel : +86 (21) 6485-1907 Fax : +86(21) 6485-0330
E-mail : contec@contec.com.cn

SHENYANG CONTEC MICROELECTRONICS Co., LTD.
No. 169, Qingnian Street, Shenhe District, Shenyang 110015, China

Tel : +86 (24) 2392-9771 Fax : +86(24)2392-9773
MACROMATE CORP.

8F, Universal Center, No.179, Ta-Tung Rd., Sec.1 Hsi-Chih, Taipei Hsien, Taiwan,
R.O.C

Tel © +886(2) 2647-9353 Fax : +886(2)2647-9373
E-mail : intl@macromate.com.tw

A-46-368 Ver. 2001. 02. 06

200307

