

DAQBench

32-bit ActiveX controls for
Measurement and Automation

User’s Guide

 Recycled Paper

© Copyright 1998~2000 ADLINK Technology Inc.

All Rights Reserved.

Manual Rev: 2.10: November 20, 2000

The information in this document is subject to change without prior notice in
order to improve reliability, design and function and does not represent a
commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to use
the product or documentation, even if advised of the possibility of such
damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks

NuDAQ, NuDAQ, DAQBench series product are registered trademarks of
ADLINK Technology Inc. IBM PC is a registered trademark of International
Business Machines Corporation. Other product names mentioned herein are
used for identification purposes only and may be trademarks and/or registered
trademarks of their respective companies.

Getting Service from ADLINK
♦ Customer Satisfaction is always the most important thing for ADLINK

Tech Inc. If you need any help or service, please contact us and get it.
ADLINK Technology Inc.

Web Site http://www.adlink.com.tw
 http://www.adlinktechnology.tw
Sales & Service service@ADLINK.com.tw
Technical NuDAQ nudaq@ADLINK.com.tw
Support NuDAM nudam@ADLINK.com.tw
 NuIPC nuipc@ADLINK.com.tw
 NuPRO nupro@ADLINK.com.tw
 Software sw@ADLINK.com.tw
 AMB amb@ADLINK.com.tw
TEL +886-2-82265877 FAX +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.
♦ Please inform or FAX us of your detailed information for a prompt,

satisfactory and constant service.
Detailed Company Information

Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX
Web Site

Questions
Product Model

¨OS:
¨Computer Brand:

Environment to Use

¨M/B: ¨CPU:
¨Chipset: ¨Bios:
¨Video Card:
¨Network Interface Card:
¨Other:

Challenge Description

Suggestions for ADLINK

Table of Contents • i

Table of Contents
Chapter 1 Introduction to DAQBench ..1

1.1 What is DAQBench?..1
1.2 Installing DAQBench..2

1.2.1 System Requirements...2
1.2.2 Installation Instructions..3
1.2.3 Installed Files..3

1.3 About the DAQBench Controls ..4
1.3.1 Properties, Methods, and Events...4
1.3.2 Object Hierarchy...5

1.4 Setting the Properties of an ActiveX Control..7
1.4.1 Using Property Pages..7
1.4.2 Changing Properties Programmatically..9

1.5 Working with Control Methods ...10
1.6 Developing Event Handler Routines ...11
1.7 Using the Analysis Library...12

1.7.1 The Online Reference--Learning the Properties, Methods, and
Events ..12

Chapter 2 Building DAQBench Applications with Visual Basic13
2.1 Developing Visual Basic Applications ...13

2.1.1 Loading the DAQBench Controls into the Toolbox.......................14
2.1.2 Building the User Interface Using DAQBench...............................15
2.1.3 Using Property Sheets in Visual Basic..15
2.1.4 Using Your Visual Basic Program to Edit Properties....................17
2.1.5 Working with Control Methods from Visual Basic.........................18
2.1.6 Developing Control Event Routines..19
2.1.7 Using the Object Browser to Build Code in Visual Basic.............20
2.1.8 Pasting Code into Your Program ...22
2.1.9 Adding Code Using Visual Basic Code Completion.....................22
2.1.10 Learning to Use Specific DAQBench Controls..............................23

Chapter 3 Building DAQBench Applications with Visual C++ ..24
3.1 Developing Visual C++ Applications..24

3.1.1 Creating Your Application in Visual C++...25
3.1.2 Adding DAQBench Controls to the Visual C++ Controls Toolbar27
3.1.3 Building the User Interface Using DAQBench Controls...............28
3.1.4 Programming with the DAQBench Controls...................................29
3.1.5 Using Properties...30
3.1.6 Using Methods in Visual C++...31
3.1.7 Using Events in Visual C++..32
3.1.8 DAQBench enhancement in Visual C++..33

ii • Table of Contents

Chapter 4 Building DAQBench Applications with Delphi.........35
4.1 Running Delphi Examples...35
4.2 Upgrading from a Previous Version of DAQBench...........................36
4.3 Developing Delphi Applications..36

4.3.1 Loading the DAQBench Controls into the Component Palette...36
4.3.2 Building the User Interface..38
4.3.3 Programming with DAQBench...40

Chapter 5 Introducing the ActiveX Controls of DAQBench43
5.1 DBoolean Control...43
5.2 DSlide Control...44
5.3 DKnob Control ..44
5.4 D7Segment Control..45
5.5 DLEDMeter Control..45
5.6 DGraph Control...46
5.7 DChart Control..47
5.8 DXYGraph Control...49
5.9 DIntenGraph Control..50
5.10 DIntenChart Control...52
5.11 NuDAQ Controls for NuDAQ PCI Cards...53
5.12 NuDAM Controls for NuDAM Modules..58
5.13 Analysis Control..59
5.14 Equipment Controls..60
5.15 ExcelLinker Control..61
5.16 WebSnapshot Control..62
5.17 DBAccess Controls ..63
5.18 OPCClient Control..65
5.19 Thermocouple Control...68
5.20 DDE/NetDDE Function..68

Chapter 6 NuDAQ Configuration..72
6.1 Using NuDAQ Configuration Utility..72

6.1.1 Register NuDAQ cards for Windows NT..73
6.1.2 Configure NuDAQ cards for Windows 98 or Windows 2000.......75
6.1.3 Define local device...76
6.1.4 Define remote device...77

6.2 NuDAQ Remote Device Access...78
6.2.1 NuDAQ RDA Server...79
6.2.2 RDA Considerations...79

Chapter 7 Distribution of Applications.....................................80

How to Use This Guide
This manual is designed to help you use the DAQBench software package for
developing your measurement or automation applications. The manual
describes how to install and use the software to meet your requirements and
help you program your own software applications. It is organized as follows.

The DAQBench User’s Guide is organized as follows:

Chapter 1, “Introduction to DAQBench”, contains an overview of DAQBench,
lists the DAQBench system requirements, describes how to install
the software, and explains the basics of ActiveX controls.

Chapter 2, “Building DAQBench Applications with Visual Basic”, describes
how you can use DAQBench controls with Visual Basic; insert the
controls into the Visual Basic environment, set their properties, and
use their methods and events; and perform their operations using
ActiveX controls in general. This chapter also outlines Visual Basic
features that simplify working with ActiveX controls.

Chapter 3, “Building DAQBench Applications with Visual C++”, describes how
you can use DAQBench controls with Visual C++, explains how to
insert the controls into the Visual C++ environment and create the
necessary wrapper classes, shows you how to create an
application compatible with the DAQBench controls using the
Microsoft Foundation Classes Application Wizard (MFC AppWizard)
and how to build your program using the ClassWizard with the
controls, and discusses how to perform these operations using
ActiveX controls in general.

Chapter 4, “Building DAQBench Applications with Delphi”, describes how you
can use DAQBench controls with Delphi; insert the controls into the
Delphi environment, set their properties, and use their methods and
events; and perform these operations using ActiveX controls. This
chapter also outlines Delphi features that simplify working with
ActiveX controls.

Chapter 5, “Introducing the ActiveX Controls of DAQBench”, simply describes
all ActiveX controls of DAQBench; explains the individual controls,
their object structure and different style of control.

Chapter 6, “NuDAQ Configuration”, describes how you can use the NuDAQ
Configuraton Utility to register NuDAQ cards on Widnows
98/NT/2000 and define local or remote devices.

Introduction to DAQBench • 1

1

Introduction to DAQBench

This chapter contains an overview of DAQBench, lists the DAQBench system
requirements, describes how to install the software, and explains the basics of
ActiveX controls.

1.1 What is DAQBench?

DAQBench is a collection of ActiveX controls for acquiring, analyzing, and
presenting data within any compatible ActiveX control container. ActiveX
controls are also known as OLE (Object Linking and Embedding) controls,
and the two terms can be used interchangeably in this context. Use the online
reference for specific information about the properties, methods, and events
of the individual ActiveX controls.

With DAQBench, you can easily develop complex custom user interfaces to
display your data, control your ADLINK Data Acquisition (DAQ) boards, and
analyze data you acquired or received from some other sources. The
DAQBench package contains the following components:

User Interface Controls -- 32-bit ActiveX controls for presenting your data in a
technical format. These controls include a graph/chart control, sliders,
thermometers, tanks, knobs, seven segment, meters, LEDs, and switches.

NuDAQ PCI Controls -- 32-bit ActiveX controls for analog I/O, digital I/O, and
counter/timer I/O operations using ADLINK NuDAQ PCI-bus cards.

NuDAM Controls -32-bit ActiveX controls for controlling and retrieving data
from NuDAM modules connected to a serial port in your computer.

2 • Introduction to DAQBench

Analysis Library Control -- Functions for basic statistics, vector and matrix
algebra , array manipulations and FFT operation. These functions are
packaged in one 32-bit ActiveX control.

Equipment Controls -- 32-bit ActiveX controls for displaying some popular
equipment patterns in industry automation. These patterns is convenient to
develop a MMI or SCADA system.

Thermocouple Control -- 32-bit ActiveX controls for Thermocouple operation.
User can just use the voltage value as the input parameter, then the
Thermocouple control converts the voltage value to the temperature data. The
control now support J-type, K-type and T-type Thermocouple.

Information Integration Controls -- 32-bit ActiveX controls for integrating
information system. These controls include Excel linker, Database access for
ODBC, Web snapshot for browser and OPC client for OPC server.

The DAQBench ActiveX controls are designed for use in Visual Basic, a
premier ActiveX control container application. However, you can use ActiveX
controls in any application that supports them, including Visual C++, Access,
and Delphi.

1.2 Installing DAQBench

The DAQBench setup program installs DAQBench through a process that
lasts approximately five minutes.

1.2.1 System Requirements

To use the DAQBench ActiveX controls, you must have the following:

Ø Microsoft Windows 95/98/NT/2000 operating system. NuDAQ PCI OCX’s
can only be used in Windows NT/98/2000 environment.

Ø Personal computer using 66 MHz 80486 or higher microprocessor

Ø VGA resolution (or higher) video adapter

Ø ActiveX control container such as Visual Basic (32-bit version), Visual C++,
or Delphi (32-bit version)

Ø Minimum of 32 MB of memory

Ø Minimum of 10 MB of free hard disk space

Ø Microsoft-compatible mouse

Introduction to DAQBench • 3

1.2.2 Installation Instructions

This section provides instructions for installing different pieces of your
DAQBench software. You can start most of these installers directly from the
startup screen that appears when you load the “ADLINK DAQBench” CD.

Installing the DAQBench ActiveX Controls

Complete the following steps to install DAQBench.

Note: To install DAQBench on a Windows NT/2000 system, you must be
logged in with Administrator privileges to complete the installation.

Make sure that your computer and monitor are turned on and that you have
installed Windows 95/98/NT/2000.

Insert the “ADLINK DAQBench” CD in the CD-ROM drive of your computer.
From the CD startup screen, click on Install DAQBench. If the CD startup
screen does not appear, use the Windows Explorer or File Manager to run the
x:\SETUP.EXE (x identifies the drive that contains the CD).

If you install DAQBench in Windows 98/NT/2000 environment, when the
software component installation process is completed, Setup will launch the
NuDAQ Configuration utility “NuDAQCfg” for you to make the NuDAQ PCI
card’s driver registries, board configuration and device definition. For a full
description of the utility, see the chapter 6 “NuDAQ Configuration”.

1.2.3 Installed Files

The DAQBench setup program installs the following groups of files on your
hard disk.

ActiveX Controls

 Directory: \DAQBench\OCX
 Files: Digital.ocx, Multiple.ocx, DBUI.ocx, DBGraph.ocx,

NDDigital.ocx, NDAnalog.ocx, NDHost.ocx,
NDCounter.ocx, DQAnalysis.ocx, DBEquip.ocx,
ExcelLinker.ocx, DBAccess.ocx, WebSnapshot.ocx,
OPCClient.ocx, Thermocouple.ocx

NuDAQPCI utilities

 Directory: \DAQBench\PCIDAQ
 Files: DAQDevMgr.exe, DMProxyStub.dll, NuDAQCfg.exe,
 RDASvr .exe

4 • Introduction to DAQBench

Example Programs
 Directory: \DAQBench\Samples\VB
 \DAQBench\Samples\VC
PDF Manual Files
 Directory: \DAQBench\Manual
One-line Help Files
 Directory: Windows system directory
 (\Windows\system for Win95/98)

 (\Windows\system32 for WinNT/2000)
 Files: DAQBenchRef.hlp, DAQBenchRef.CNT
Utility Files
 Directory: \DAQBench\Util
 Files: DAQCvt.exe
VC++ Data Type Wraping Library Files
 Directory: \DAQBench\Varpacker
 Files: VarPacker.lib, VarPacker.dll, VarPacker.h

1.3 About the DAQBench Controls

Before learning how to use DAQBench, you should be familiar with using
ActiveX controls. This section outlines some background information about
ActiveX controls, in particular the DAQBench controls. If you are not already
familiar with the concepts outlined in this section, make sure you understand
them before continuing. You also might want to refer to your programming
environment documentation for more information on using ActiveX (OLE)
controls in your particular environment.

1.3.1 Properties, Methods, and Events

ActiveX controls consist of three different parts “ properties, methods, and
events “ used to implement and program the controls.

Properties are the attributes of a control. These attributes describe the
current state of the control and affect the display and behavior of the control.
The values of the properties are stored in variables that are part of the control.

Methods are functions defined as part of the control. Methods are called with
respect to a particular control and usually have some effect on the control itself.
The operation of most methods also is affected by the current property values
of the control.

Introduction to DAQBench • 5

Events are notifications generated by a control in response to some particular
occurrence. The events are passed to the control container application to
execute a particular subroutine in the program (event handler).

For example, the DAQBench DGraph control has a wide variety of properties
that determine how the graph looks and operates. To customize the graph
appearance and behavior, set properties for color, axes, scale, tick marks, and
plots.

The DGraph control also has a series of high-level methods, or functions, that
you can invoke to set several properties at once and to perform a particular
operation. For example, you can use the PlotGraph method to pass an array
of data to the DGraph control.

1.3.2 Object Hierarchy

As described in the previous section, each ActiveX control has properties,
methods, and events. These three parts are stored in a software object, which
is the piece of software that makes up the ActiveX control and contains all its
parts. Certain ActiveX controls are very complex, containing many different
parts (properties). For this reason, complex ActiveX controls are often
subdivided into different software objects, the sum of which make up the
ActiveX control. Each individual object in a control contains some specific
parts (properties) and functionality (methods and events) of the ActiveX
control. The relationships between different objects of a control are
maintained in an object hierarchy. At the top of the hierarchy is the actual
control itself.

This top-level object contains its own properties, methods, and events. Some
of the top-level object properties are actually reference to other objects that
define specific parts of the control. Objects below the top-level have their own
methods and properties, and their properties can reference to other objects.
The number of objects in this hierarchy is not limited.

Another advantage of subdividing controls is the re-use of different objects
between different controls. One object might be used at different places in the
same object hierarchy or in several different controls/object hierarchies.

6 • Introduction to DAQBench

The following illustration shows part of the object hierarchy of the DAQBench
DSlide control.

The DSlide object contains some of its own properties, such as Name and
BackColor. It also contains properties such as Axis and Pointers, which are
separate objects from the DSlide object. The Axis object contains all the
information about the axis used on the slide and has properties such as
Maximum and Minimum. The Axis object contains Ticks object and ValuePair
object of its own. Ticks object has properties, such as MajorMark, MajorColor,
MinorMark, MinorColor. ValuePair object has properties, such as Count, a
array of name, a array of value. If the style of DSlide is Numeric then Axis
object use the information of Ticks object. Otherwise, use the information of
ValuePair.. The DSlide object contains eight Pointer objects. Each Pointer
object has its own properties, such as Value, PointerStyle, FillColor.

Introduction to DAQBench • 7

1.4 Setting the Properties of an ActiveX Control

You can modify the properties of an ActiveX control from its property pages or
directly from the program.

1.4.1 Using Property Pages

Property pages are common throughout the Windows 95/98/NT/2000
interface. When you want to change the appearance or options of a particular
object, right click on the object and select Properties. A property page or
tabbed dialog box appears with a variety of properties that you can set for that
particular object. You customize ActiveX controls in exactly the same way.
Once you place the control on a form in your programming environment, right
click on the control and select Properties... to customize the appearance and
operation of the control.

Use the property pages to set the property values for each ActiveX control
while you are creating your application. The property values you select at this
point represent the state of the control at the beginning of your application.
You can change the property values from within your program, as shown in
the next section, “Changing Properties Programmatically”.

In some programming environments (such as Visual Basic and Delphi), you
have two different property pages. The property page common to the
programming environment is called the default property sheet; it contains the
most basic properties of a control.

Your programming environment assigns default values for some of the basic
properties, such as the control name and the tab order. You must edit these
properties through the default property sheet.

8 • Introduction to DAQBench

The following illustration shows the Visual Basic default property sheet for the
DGraph control.

Visual Basic Default Property Sheets

The second property sheet is called the custom property page. The layout and
functionality of the custom property pages vary for different controls. The
following illustration shows the custom property page for the DGraph control.

DAQBench Custom Property Pages

Introduction to DAQBench • 9

1.4.2 Changing Properties Programmatically

You can also set or read the properties of your controls programmatically. For
example, if you want to change the state of an DBoolean control during
program execution, change the Value property from True to False or from
False to True. The exact syntax for reading and writing property values
depends on your programming language, so consult the appropriate section
of the Help system for using your programming environment. In this
discussion, properties are set with Visual Basic syntax, which is similar to
most implementations.

Each control you create in your program has a name (like a variable name) , it
is a reference of the control in your program. You can set the value of a
property on a top-level object with the following syntax.

ObjectName.property = new_value

For example, you can change the Value property of an DBoolean control to off
by using the following line of code, where DBoolean1 is the default name of
the DBoolean control.

DBoolean1.Value = 0

To access properties of sub-objects referenced by the top-level object, use the
control name, followed by the name of the sub-object and the property name.
For example, consider the following code for the DAQBench graph control.

DGraph1.YAxis.Log = True

In the above code, YAxis is a property of the DGraph control and refers to a
Axis object.

Log is one of Axis properties. The DGraph control also has a XAxis property
that refers to a different Axis object.

You can retrieve the value of control properties from your program in the same
way. For example, you can print the value of the DBoolean control.

Print DBoolean1.Value

You can display the Maximum used by the DGraph control in a Visual Basic
text box with the following code.

Text1.Text = DGraph1.YAxis.Maximum

10 • Introduction to DAQBench

1.5 Working with Control Methods

ActiveX controls and objects have their own methods, or functions, that you
can call from your program. Methods can have parameters that are passed to
the method and return values that pass information back to your program.

For example, the PlotGraph method for the DAQBench DGraph control has a
required parameter --The array of data to be plotted -- that you must include
when you call the method. If you want to plot the data returned from an Analog
Input control, use the following line of code (the array ScaledData is
automatically generated by the Pci9112 control).

DGraph1.PlotGraph ScaledData

Depending on your programming environment, the parameters might be
enclosed in parentheses. Visual Basic does not use parentheses to pass
parameters if the function or method is not assigned a return variable. The
ReadDIPort Method in the DAQ Digital Input control has the following form
when used with a return variable lresult.

lresult = Pci7250.ReadDIPort(port, value)

Introduction to DAQBench • 11

1.6 Developing Event Handler Routines

After you configure your controls on a form, you can create event handler
routines in your program to respond to events generated by the controls. For
example, the DAQ Analog Input control has an AiComplete event that fires
(occurs) when the acquired data have completed.

You can configure the control to collect 1,000 points of data from a particular
channel at a rate of 1,000 points per second. After ONE second, the data
buffer is ready and the AiComplete event is fired. In your AiComplete event
routine, you can write code to analyze the data buffer, plot it, or store it to disk.

To develop the event routine code, most programming environments generate
a skeleton function to handle each event. The Visual Basic , Visual C++ , and
Delphi sections outline how to generate these function skeletons to build your
event handler routines. For example, the Visual Basic environment generates
the following function skeleton into which you insert the functions to call when
the AiComplete event occurs.

Private Sub Pci9112_AiComplete(ScaledData As Variant,
BinaryCodes As Variant)

End Sub

In most cases, the event also returns some data to the event handler, such as
the ScaledData and BinaryCodes arrays in the previous example, that can be
used in your event handler routine.

12 • Introduction to DAQBench

1.7 Using the Analysis Library

The DAQBench Analysis Library is packaged as one ActiveX control, named
DQAnalysis. You can add analysis functions to your project in the same way
you add user interface or data acquisition controls. After adding the Analysis
controls to your programming environment, use the analysis functions like any
other method on a control. To use any specific function, place the appropriate
Analysis control on a form. In your program, call the name of the control
followed by the name of the analysis function:

MeanValue = DQAnalysis1.Mean (Data)

Consult the online reference for more information on the individual analysis
functions and their use.

1.7.1 The Online Reference--Learning the Properties, Methods,
and Events

The DAQBench online reference contains detailed information on each
control and its associated properties, methods, and events. Refer to
DAQBench online reference when you are using a control for the first time.
Remember that many of the DAQBench controls share sub-objects and
properties, so when you learn how to use one control, you also learn how to
use others. You can open the online reference from within most programming
environments by clicking on the Help button in the custom property pages

Some programming environments have built-in mechanisms for detailing the
available properties, methods, and events for a particular control and
sometimes include automatic links to the help file. Refer to the Help system on
your particular programming environment to learn about additional tools.

Building DAQBench Applications with Visual Basic • 13

2

Building DAQBench
Applications with Visual Basic

This chapter describes how you can use the DAQBench controls with Visual
Basic; insert the controls into the Visual Basic environment, set their
properties, and use their methods and events; and perform these operations
using ActiveX controls in general. This section of the online reference also
outlines Visual Basic features that simplify working with ActiveX controls.

At this point you should be familiar with the general structure of ActiveX
controls described in Introduction to DAQBench . The individual DAQBench
controls are described in the various function references.

2.1 Developing Visual Basic Applications

The following procedure explains how you can start developing Visual Basic
applications with DAQBench.

1. Select the type of application you want to build. Initially select a Standard
EXE for your application type.

2. Design the form. A form is a window or area on the screen on which you
can place controls and indicators to create the user interface for your
program. The toolbox in Visual Basic contains all of the controls available
for developing the form.

3. After placing each control on the form, configure the properties of the
control using the default and custom property pages.

Each control on the form has associated code (event handler routines) in your
Visual Basic program that automatically executes when the user operates that
control.

14 • Building DAQBench Applications with Visual Basic

4. To create this code, double click on the control while editing your
application and the Visual Basic code editor opens to a default event
handler routine.

2.1.1 Loading the DAQBench Controls into the Toolbox

Before building an application using the DAQBench controls and libraries, you
must add them to the Visual Basic toolbox. The DAQBench ActiveX controls
are divided into different groups including user interface controls (DBUI.OCX,
DBGraph.OCX), data acquisition controls (Digital.OCX, Multiple.OCX),
NuDAM controls (NDDigital.OCX, NDAnalog.OCX, NDHost.OCX,
DNCounter.OCX), equipment controls(DBEquip.OCX), analysis library
controls (DQAnalysis .OCX), ExcelLinker control (ExcelLinker.OCX),
WebSnapshot control (WebSnapshot.OCX), DBAccess controls
(DBAccess.OCX), OPCClient control (OPCClient.OCX) and Thermocouple
control(Thermocouple.OCX). The exact list of controls depends on the
DAQBench package you use.

Use the following procedure to add DAQBench controls to the project toolbox.

1. In a new Visual Basic project, right click on the toolbox and select
Components....

2. Scroll down to the control list , then you can find the DAQBench controls
which beginning with the “DAQBench” .

3. Place a checkmark in the box next to the control groups to select the
controls you want to use in your project. If the DAQBench controls are not
in the list, select the control files from the DAQBench\OCX directory by
pressing the Browse button.

If you need to use the DAQBench controls in several projects, create a new
default project in Visual Basic to include the DAQBench controls and serve as
a template.

1. Create a new Standard EXE application in the Visual Basic environment.

2. Add the DAQBench controls to the project toolbox as described in the
preceding procedure.

3. Save the form and project in the \Template\Projects directory under your
Visual Basic directory.

4. Give the form and project a descriptive name, such as DBForm and
DBProject.

After creating this default project, you have a new option, DBProject, that
includes the DAQBench controls in the New Project dialog by default. You
can create additional project templates with different combinations of controls.

Building DAQBench Applications with Visual Basic • 15

2.1.2 Building the User Interface Using DAQBench

After you add the DAQBench controls to the Visual Basic toolbox, use them to
create the front panel of your application. To place the controls on the form,
select the corresponding icon in the toolbox and click and drag the mouse on
the form. This step creates the corresponding control. After you create
controls, move and size them by using the mouse. To move a control, click
and hold the mouse on the control and drag the control to the desired location.
To resize a control, select the control and place the mouse pointer on one of
the hot spots on the border of the control. Drag the border to the desired size.
Notice that the icons for all but the user interface controls cannot be resized
and will not be visible at run time.

Once ActiveX controls are placed on the form, you can edit their properties
using their property sheets. You can also edit the properties from within the
Visual Basic program at run time.

2.1.3 Using Property Sheets in Visual Basic

After placing a control on a Visual Basic form, configure the control by setting
its properties in the Visual Basic property pages and DAQBench custom
control property pages (illustrated below). Visual Basic assigns some default
properties, such as the control name and the tab order. When you create the
control, you can edit these stock properties in the Visual Basic default property
sheet. To access this sheet, select a control and select Properties Window
from the View menu, or press <F4>. To edit a property, highlight the property
value on the right side of the property sheet and type in the new value or select
it from a pull down menu. The most important property in the default property
sheet is Name, which is used to reference the control in the program.

Edit all other properties of an ActiveX control in the custom property sheets. To
open the custom property sheets, right click on the control on the form and
select Properties... or select the controls and press <Shift-F4>.

16 • Building DAQBench Applications with Visual Basic

Visual Basic Property Pages

DAQBench Custom Property Pages

Building DAQBench Applications with Visual Basic • 17

2.1.4 Using Your Visual Basic Program to Edit Properties

You can set and read the properties of your controls programmatically in
Visual Basic. Use the name of the control with the name of the property as you
would with any other variable in Visual Basic. The syntax for setting a property
in Visual Basic is name.property = new value.

For example, if you want to change the state of an DBoolean control during
program execution, change the Value property from True to False or
False to True.

DBoolean.Value = 0x3

Some properties of a control can be objects that have their own properties. In
this case, specify the name of the control, sub-object, and property separated
by periods. For example, consider the following code for the analog input of
DAQ Pci9112 control.

Pci91121.ScanRate = 10000

In the above code, ScanRate is a property of the Pci9112 control. You can
retrieve the value of control properties from your program in the same way.
For example, you can print the value of an DBoolean control.

Print DBoolean.Value

In Visual Basic most controls have a default property such as Value for the
Knob, DBoolean, and Slide controls. You can access the default property of a
control by using its control name (without the property name attached).

DSlide1 = 5.0

is programmatically equivalent to

DSlide1.Value = 5.0

18 • Building DAQBench Applications with Visual Basic

2.1.5 Working with Control Methods from Visual Basic

Calling the methods of an ActiveX control in Visual Basic is similar to working
with the control properties. To call a method, add the name of the method after
the name of the control (and sub-object if applicable). For example, you can
call the StartContAI method on the DAQ analog input control.

Pci9112.StartContAI

Methods can have parameters that you pass to the method, and return values
that pass information back to your program. For example, the PlotGraph
method for the DAQBench DGraph control has two required parameter -- The
array of scaled data to be plotted and the index of plot -- That you must include
when you call the method. If you want to plot the data returned from an Analog
Input control, you must process the event of control, see the following line of
code.

DGraph1.PlotGraph ScaledData, 0

In Visual Basic if you call a method without assigning a return variable, any
parameters passed to the method are listed after the method name, separated
by commas without parentheses.

Pci9112.ReadSingleAI 0, Data

If you assign the return value of a method to a return variable, enclose the
parameters in parentheses.

result = Pci9112.ReadSingleAI(0, Data)

You can use the Visual Basic Object Browser to add method calls to your
program.

Building DAQBench Applications with Visual Basic • 19

2.1.6 Developing Control Event Routines

After you configure your controls in the forms editor, write Visual Basic code to
respond to events on the controls. The controls generate these events in
response to user interactions with the controls or in response to some other
occurrence in the control. To develop the event handler routine code for an
ActiveX control in Visual Basic, double click on the control to open the code
editor, which automatically generates a default event handler routine for the
control. The event handler routine skeleton includes the control name, the
default event, and any parameters that are passed to the event handler
routine. The following code is an example of the event routine generated for
the DSlide control. This event routine (Change) is called when the value of the
slide is changed by the user or by some other part of the program.

Private Sub DSlide1_Change(ByVal PointerNo As Integer,

 ByVal Value As Variant)
End Sub

To generate an event handler for a different event of the same control, double
click the control to generate the default handler, and select the desired event
from the right pull-down menu in the code window, as shown in the following
illustration.

Selecting Events in the Code Window

Use the left pull-down menu in the code window to change to another control
without going back to the form window.

20 • Building DAQBench Applications with Visual Basic

2.1.7 Using the Object Browser to Build Code in Visual Basic

Visual Basic includes a tool called the Object Browser that you can use to
work with ActiveX controls. The Object Browser displays a detailed list of the
available properties, methods, and events for a particular control. It presents a
three-step hierarchical view of controls or libraries and their properties,
methods, functions, and events. To open the Object Browser, select Object
Browser from the View menu, or press <F2>.

In the Object Browser, use the top left pull-down menu to select a particular
ActiveX control file, library, or instrument driver. You can select any currently
loaded control or driver. The Classes list on the left side of the object browser
displays a list of controls, objects, and function classes available in the
selected control file or driver.

The following illustration shows the DAQBench User Interface (UI) control file
selected in the Object Browser. The Classes list shows all the UI controls and
associated object types. Each time you select an item from the Classes list in
the Object Browser, the Members list on the right side displays the properties,
methods, and events for the selected object or class.

Viewing DGraph in the Object Browser

Building DAQBench Applications with Visual Basic • 21

When you select an item in the Members list, the prototype and description of
the selected property, method, or event are displayed at the bottom of the
Object Browser dialog box. In the illustration above, the DGraph control is
selected from the list of available UI objects. For this control, the PlotGraph
method is selected and the prototype and description of the method appear in
the dialog box. The prototype of a method or function lists all parameters,
required and optional.

When you select a property of a control or object in the Members list which is
an object in itself, the description of the property includes a reference to the
object type of the property. For example, the following illustration shows the
Knob control (DKnob) selected in the Classes list and its Axis property
selected in the Members list.

Viewing DKnob in the Object Browser

The Axis on the Knob control is a separate object, so the description at the
bottom of the dialog window lists the Axis property as DAxis. DAxis is the type
name of the Axis object, and you can select DAxis in the Classes list to see its
properties and methods. Move from one level of the object hierarchy to the
next level using the Object Browser to explore the structure of different
controls.

The question mark (?) button at the top of the Object Browser opens the help
file to a description of the currently selected item. To find more information
about the DGraph control, select the control in the window and press the ?
button.

22 • Building DAQBench Applications with Visual Basic

2.1.8 Pasting Code into Your Program

If you open the Object Browser from the Visual Basic code editor, you can
copy the name or prototype of a selected property, method, or function to the
clipboard and then paste it into your program. To perform this task, select the
desired Member item in the Object Browser. Press the Copy to Clipboard
button at the top of the Object Browser or highlight the prototype at the bottom
and press <Ctrl-C> to copy it to the clipboard. Paste it into your code window
by selecting Paste from the Edit menu or pressing <Ctrl-V>.

Use this method repeatedly to build a more complex reference to a property of
a lower-level object in the object hierarchy. For example, you can create a
reference to

DKnob1.Axes.ValuePairs.Name(3)

by typing in the name of the control (DKnob1) and then using the Object
Browser to add each section of the property reference.

2.1.9 Adding Code Using Visual Basic Code Completion

Visual Basic supports automatic code completion in the code editor. As you
enter the name of a control, the code editor prompts you with the names of all
appropriate properties and methods. Try placing a control on the form and
then entering its name in the code editor. After typing the name, add a period
as the delimiter to the property or method of the control. As soon as you type
the period, Visual Basic drops down a menu of available properties and
methods, as shown below.

Visual Basic Code Completion

Building DAQBench Applications with Visual Basic • 23

You can select from the list or properties and events by scrolling through the
list and selecting one or by typing in the first few letters of the desired item.
Once you have selected the correct item, type the next logical character such
as a period, space, equal sign, or carriage return to enter the selected item in
your code and continue editing the code.

2.1.10 Learning to Use Specific DAQBench Controls

Each DAQBench control and its use are described in more detail in other
sections of this help file. However, these sections do not discuss every
property, method, and feature of every control. The DAQBench online
reference contains detailed information about each control and all its
associated properties, events, and methods. Refer to the online reference to
find descriptions of the different features of a particular control. Remember
that many of the DAQBench controls share properties. When you learn how to
use one control, you are learning how to use others as well.

24 • Building DAQBench Applications with Visual C++

3

Building DAQBench
Applications with Visual C++

This chapter describes how you can use DAQBench controls with Visual C++,
explains how to insert the controls into the Visual C++ environment and create
the necessary wrapper classes, shows you how to create an application
compatible with the DAQBench controls using the Microsoft Foundation
Classes Application Wizard (MFC AppWizard) and how to build your program
using the ClassWizard with the controls, and discusses how to perform these
operations using ActiveX controls in general.

At this point you should be familiar with the general structure of ActiveX
controls as well as C++ programming and the Visual C++ environment.

3.1 Developing Visual C++ Applications

The following procedure explains how you can start developing Visual C++
applications with DAQBench.

1. Create a new workspace or project in Visual C++.
2. To create a project compatible with the DAQBench ActiveX controls, use

the Visual C++ MFC AppWizard to create a skeleton project and
program.

3. After building the skeleton project, add the ActiveX controls you need to
the controls toolbar. From the toolbar, you can add the controls to the
application itself.

4. After adding a control to your application, you can configure its properties
by its property pages.

5. While developing your program code, use the control properties and
methods and create event handlers to process different events generated
by the control.

Building DAQBench Applications with Visual C++ • 25

Create the necessary code for these different operations using the
ClassWizard in the Visual C++ environment.

3.1.1 Creating Your Application in Visual C++

When developing new applications, use the MFC AppWizard to create new
project workspace so that the project is compatible with ActiveX controls. The
MFC AppWizard creates the project skeleton and adds the necessary code
that enables you to add ActiveX controls to your program.

1. Create a new project by selecting New... from the File menu. The New
dialog box opens.

New Dialog Box

2. On the Projects tab, select the MFC AppWizard (exe) and enter the
project name in the Project name field and the directory in the Location
field.

3. Click on OK to setup your project.Complete the next series of dialog
windows in which the MFC AppWizard prompts you for different project
options. If you are a new Visual C++ or the MFC AppWizard user, accept
the default options unless otherwise stated in this documentation.

4. In the first step, select the type of application you want to build.
For this example, select a Dialog based application, as shown in below to
make it easier to become familiar with the DAQBench controls.

26 • Building DAQBench Applications with Visual C++

MFC AppWizard -- Step 1

5. Click on the Next> button to continue.

6. Enable ActiveX controls support. If you have selected a Dialog based
application, step two of the MFC AppWizard enables ActiveX Controls
support by default.

7. Continue selecting desired options through the remainder of the MFC
AppWizard. When you finish the MFC AppWizard, it builds a project and
program skeleton according to the options you specified. The skeleton
includes several classes, resources, and files, all of which can be
accessed from the Visual C++ development environment.

8. Use the Workspace window, which you can select from the View menu, to
see the different components in your project.

Building DAQBench Applications with Visual C++ • 27

3.1.2 Adding DAQBench Controls to the Visual C++ Controls
Toolbar

Before building an application using the DAQBench controls, you must load
the controls into the Controls toolbar in Visual C++ from the Component
Gallery in the Visual C++ environment. When you load the controls using the
Component Gallery, a set of C++ wrapper classes automatically generate in
your project. You must have wrapper classes to work with the DAQBench
controls.

The Controls toolbar is visible in the Visual C++ environment only when the
Visual C++ dialog editor is active. Use the following procedure to open the
dialog editor.

1. Open the Workspace window by selecting Workspace from the View
menu.

2. Select the Resource View (second tab along the bottom of the
Workspace window).

3. Expand the resource tree and double click on one of the Dialog entries.

4. If necessary, right click on any existing toolbar and enable the Controls
option.

By adding controls to your project, you can create the necessary wrapper
classes for the control in your project and add the control to the toolbox, then
use the following procedures to add the controls to the toolbar.

1. Select Project>>Add To Project...>>Components and Controls and,
in the following dialog, double click on Registered ActiveX Controls.

2. Select and insert registered ActiveX controls into your project and control
toolbox.

3. Select the controls you need and click the Insert button. All DAQBench
controls start with DAQBench.

4. Click on OK in the following dialog windows.

5. When you have inserted all controls, click Close in the Components and
Controls Gallery.

28 • Building DAQBench Applications with Visual C++

3.1.3 Building the User Interface Using DAQBench Controls

After adding the controls to the Controls toolbar, use the controls in the design
of the application user interface. Place the controls on the dialog form using
the dialog editor. You can size and move individual controls in the form to
customize the interface. Use the custom property sheets to configure control
representation on the user interface and control behavior at run time.

To add DAQBench controls to the form, open the dialog editor by selecting the
dialog from the Resource View of the Workspace window. If the Controls
toolbar is not displayed in the dialog editor, open it by right clicking on any
existing toolbar and enabling the Controls option.

To place a DAQBench control on the dialog form, select the desired control in
the Controls toolbar and click , then drag the mouse on the form to create the
control. After placing the controls, move and resize them on the form as
needed.

After you add a DAQBench control to a dialog form, configure the default
properties of the control by right clicking on the control and selecting
Properties… to display its custom property sheets.

DGraph Control Property Sheets

So you can see immediately how different properties affect the control, a
separate window displays a sample copy of the control that reflects the
property changes as you make them in the property sheets.

Building DAQBench Applications with Visual C++ • 29

3.1.4 Programming with the DAQBench Controls

To program with DAQBench controls, use the properties, methods, and events
of the controls as defined by the wrapper classes in Visual C++.

Before you can use the properties or methods of a control in your Visual C++
program, assign a member variable name to the control. This member
variable becomes a variable of the application dialog class in your project.

To create a member variable for a control on the dialog form, right click on the
control and select ClassWizard. In the MFC Class Wizard window, activate
the Member Variables tab.

MFC ClassWizard -- Member Variable Tab

Select the new control in the Control IDs field and press the Add Variable...
button. In the dialog window that appears, complete the member variable
name and press OK. Most member variable names start with m_, and you
should adhere to this convention. After you create the member variable, use it
to access a control from your source code. The illustration above shows the
MFC Class Wizard after member variables have been added for a graph and
analog input control.

30 • Building DAQBench Applications with Visual C++

3.1.5 Using Properties

Unlike Visual Basic, you can not read or set the properties of DAQBench
controls directly in Visual C++. Instead, the wrapper class of each control
contains functions to read and write the value of each property. These
functions are named starting with either Get or Set followed by the name of
the property. For example, to set the Value property of a slide, use the
SetValue function of the wrapper class for the Slide control. In the source
code, the function call is preceded by the member variable name of the control
to which it applies.

m_Slide.SetValue(COleVariant(5.0));

All values passed to properties need to be the variant type. Convert the value
passed to the Value property to a variant using COleVariant() or the
DAQBench type wrappinh library(Please refer to 3.1.8 section).

Use the GetValue() function to read the value of a control or to pass a value
of a control to another part of your program. For example, pass the value of a
Slide control to a Meter control.

m_Meter.SetValue(m_Slide.Pointerl.GetValue());

Because the GetValue function returns its value as a variant in the previous
line of code, conversion to a variant type is not necessary.

You can view the names of all the property functions (and other functions) for
a given control in the ClassView of the Workspace window. In the Workspace
window, select ClassView and then the control for which you want to view
property functions and methods. The following illustration shows the functions
for the Slide object as listed in the Workspace. These are created
automatically when you add a control to the Controls toolbar in you project.

Viewing Property Functions and Methods in the Workspace Window

Building DAQBench Applications with Visual C++ • 31

If you need to access a property of a control which is in itself another object,
use the appropriate property function to return the sub-object of the control.
Make a call to access the property of the sub-object. Include the header file in
your program for any new objects. For example, use the following code to
configure the Axis object of a Slide control.

#include daxis.h
CDAxis Axis1;
Axis1 = m_Slide.GetAxis();
Axis1.GetTicks().SetMaximum(COleVariant(5.0));

You can chain this operation into one function call without having to declare
another variable.

#include dslide.h
#include daxis.h
#include dticks.h
m_Slide.GetAxis().GetTicks().SetMaximum
(COleVariant(5.0));

If you need to access an object in a collection property, use the Item method
with the index of the object. Remember to include the header file for the
collection object. For example, to set the maximum of the first y-axis on a
graph, use the following code.

#include dgraph.h
#include daxis.h
#include dticks.h
m_DGraph.GetAxis().GetTicks().SetMaximum(COleVariant(
5.0));

3.1.6 Using Methods in Visual C++

Use the control wrapper classes to extract all methods of the control. To call a
method, append the method name to the member variable name and pass the
appropriate parameters. If the method does not require parameters, use a pair
of empty parentheses.

m_Pci91121.StartContAI();
Most methods take some parameters as variants. You must convert any such
parameter to a variant if you have not already done so or use the DAQBench
type wrapping library (Please refer to 3.1.8 section).. You can
convert most scalar values to variants with COleVariant(). For example, the
PlotGraph method of the graph control requires one scalar values as variants.

m_Graph.PlotGraph(COleVariant(1.0), 0);
If you need to call a method on a sub-object of a control, follow the
conventions outlined in Using Properties . For example, To call PlotGraph on
one particular plot of your graph, use the following line of code.

m_Graph.PlotGraph (*Voltages, 2);

32 • Building DAQBench Applications with Visual C++

3.1.7 Using Events in Visual C++

After placing a control on your form, you can start defining event handler
functions for the control in your code. Events generate automatically at run
time when different controls respond to conditions, such as a user clicking a
button on the form or the data acquisition process acquiring a specified
number of points.

Use the following procedure to create an event handler.

1. Right click on a control and select ClassWizard.

2. Select the Message Maps tab and the desired control in the Object IDs
field. The Messages field displays the available events for the selected
control. See Event Handler for the Change Event of a Knob.

3. Select the event and press the Add Function... button to add the event
handler to your code.

4. To switch directly to the source code for the event handler, click on the
Edit Code button. The cursor appears in the event handler, and you
can add the functions to call when the event occurs. You can use the
Edit Code button at any time by opening the class wizard and
selecting the event for the specific control.

The following illustration is an example of an event handler generated for the
Change event of a knob. Insert your own code in the event handler:

void CTestDlg::OnChangeDKnob1(Short PointerNo, const
VARIANT FAR & Value)
{
// TODO: Add your control notification handler code here
}

Event Handler for the Change Event of a Knob.

Building DAQBench Applications with Visual C++ • 33

3.1.8 DAQBench enhancement in Visual C++

To make it flexible and ease of use in Visual Basic environment, many
properties and methods arguments in DAQBench are with VARIANT type
which is not a basic type of C/C++. Actually VARIANT is defined as a structure.
Therefore to use VARIANT type in C/C++ is not so straightforward as the basic
types. In addition to this, some of the DAQBench controls encapsulate objects
in it. For example, DChart control encapsulates Xaxis, Yaxis objects. You can
easily access the encapsulated objects in VB. However it is not so
straightforward to access them in VC++. In order to let user can access the
encapsulated objects in the DAQBench controls, and use VARIANT structure
in the VC++ environment in an easier way, DAQBench provides some
enhancement functions.

u The enhancement method of DAQBench control
Some methods are added in the User-Interface controls to help user with the
above difficulties . Take the DChart control object as an example. After adding
this control into the project, you will find that some additional functions in the
header file “dchart.h”, such as :

 void SetXAxisViewNumber(long ViewNumber);
 void SetYAxisMinMax(double Min, double Max);

With these functions, user can set the control properties directly and pass the
arguments by the basic data type. Without this kind of functions, if you want to
draw the X-Axis grids of the DChart object during the run-time, you need the
codes below in C++:

 CDChart m_Chart; //declare a chart object

//set the major grid property as true
 m_Chart.GetXAxis().GetTicks().SetMajorGrid(true);

Now with these enhancement functions, you can simply show the grids by the
following way:

 CDChart m_Chart2; //declare a chart object

//enable major grid and disable minor grid
 m_Chart2.SetXAxisGrid(true, false);

Please refer to the DAQBench function reference manual for the details of the
enhancement methods.

34 • Building DAQBench Applications with Visual C++

u The data type wraping library for DAQBench VARIANT structure

Due to the limitation of parameter passing in COM, some DAQBench control
object methods have VARIANT type of parameters. If user wants to convert
the VARIANT type data to other basic type data (e.g. integer, real), user can
use COleVariant to wrap the VARIANT type data to basic data type. But for
some complicated types (such as array), COleVariant can not provide the type
casting function. Therefore DAQBench provides a data type conversion library
“VarPacker.dll” to help users to wrap other data type into a VARIANT structure.

Before going to next stage, there are some things user has to do:
1. Check if the VarPacker.dll is in the Winnt/System32 (for NT/2000) or

Windows/System (for 98) directory.
2. Check if the VarPacker.h is in the DAQBench installation\include

directory.
3. Open/New the VC++ project workspace.
4. Add the VarPacker.h into your project workspace.
5. Link with the VarPacker.lib library, this l ibrary is located in DAQBench

installation\OCX directory.

After the above setting, user now can use “VarPacker” library functions. Some
usage examples of the library are described below:

Case 1: Suppose user wants to change the Value property (VARIANT type) of
a DBoolean control to 16. User can write the code in the following
way:

DBoolean1.SetValue(LongToVar((long) 16));

Case 2: Suppose user wants to use the DChart object to draw a sine wave.
The PlotCharts method needs an array wrapped in the VARIANT

 structure as its argument. Here is the solution of this case:

double data[100]; //declare the array to store data
…
// generate the sine wav data and store in data[100]
…
Dchart1.PlotChart(ArrayToVar(data, 100));

Please refer to the DAQBench function reference manual for the details of the

data type wrapping functions in VarPacker.dll.

Building DAQBench Applications with Delphi • 35

4

Building DAQBench
Applications with Delphi

This section of the online reference describes how you can use DAQBench
controls with Delphi; insert the controls into the Delphi environment, set their
properties, and use their methods and events; and perform these operations
using ActiveX controls. This section also outlines Delphi features that simplify
working with ActiveX controls.

At this point you should be familiar with the general structure of ActiveX
controls.

4.1 Running Delphi Examples

To run the Delphi examples installed with DAQBench, you need to import the
appropriate controls into the Delphi environment. See Loading the DAQBench
Controls into the Component Palette for more information about loading the
controls.

36 • Building DAQBench Applications with Delphi

4.2 Upgrading from a Previous Version of
DAQBench

When you upgrade DAQBench, you must remove the current controls from
the Delphi environment and reinsert the controls in the Delphi environment to
update the support files.

1. From the Component menu select Install Packages....

2. In the Design packages list, select Delphi User’s Components.

3. Click on Edit... and Yes in the dialog boxes to edit the user component
package. The package editor lists all the components currently installed
in the user components package, including the DAQBench controls.

4. Select each of the DAQBench entries and click on Remove.

5. Click on Compile to rebuild the package.

6. Close the package editor.

4.3 Developing Delphi Applications

You can start to develop applications in Delphi by using a form. A form is a
window or area on the screen on which you can place controls and indicators
to create the user interface for your programs. The Component palette in
Delphi contains all of the controls available for building applications. After
placing each control on the form, configure the properties of the control with
the default and custom property pages. Each control you place on a form has
associated code (event handler routines) in the Delphi program that
automatically executes when the user operates the control or the control
generates an event.

4.3.1 Loading the DAQBench Controls into the Component
Palette

Before you can use the DAQBench controls in your Delphi applications, you
must add them to the Component palette in the Delphi environment. You need
to add the controls to the palette only once because the controls remain in the
Component palette until you explicitly remove them. When you add controls to
the palette, you create Pascal import units (header files) that declare the
properties, methods, and events of a control. When you use a control on a
form, a reference to the corresponding import unit is automatically added to
the program.

Building DAQBench Applications with Delphi • 37

Note: Before adding a new control to the Component palette, make sure to
save all your work in Delphi, including files and projects. After loading the
controls, Delphi closes any open projects and files to complete the loading
process.

Use the following procedure to add ActiveX controls to the Component
palette.

1. Select Import ActiveX Control... from the Component menu in the
Delphi environment. The Import ActiveX Control window displays a list of
currently registered controls.

Delphi Import ActiveX Control Dialog Box

2. Select the control group you want to add to the Component palette. All
DAQBench controls start with DAQBench.

3. After selecting the control group, click Install....

Delphi generates a Pascal import unit file for the selected .OCX file, which is
stored in the Delphi \Imports directory. If you have installed the same .OCX
file previously, Delphi prompts you to overwrite the existing import unit file.

4. In the Install dialog box, click on OK to add the controls to the Delphi
user’s components package.

5. In the following dialog, click on Yes to rebuild the user’s components
package with the added controls. Another dialog box acknowledges the
changes you have made to the user’s components package, and the
package editor displays the components currently installed.

38 • Building DAQBench Applications with Delphi

At this point, you can add additional ActiveX controls with the following
procedure.

a. Click on the Add button.

b. Select the Import ActiveX tab.

c. Select the ActiveX control you want to add.

d. Click on OK.

e. After adding the ActiveX controls, compile the user’s components
package.

If your control does not appear in the list of registered controls, click the Add...
button. To register a control with the operating system and add it to the list of
registered controls, browse to and select the OCX file that contains the control.
Most OCX files reside in the DAQBench\OCX directory.

New controls are added to the ActiveX tab in the Components palette. You
can rearrange the controls or add a new tab to the Components palette by
right clicking on the palette and selecting Properties....

4.3.2 Building the User Interface

After you add the DAQBench controls to the Component palette, use them to
create the user interface. Open a new project, and place different controls on
the form. These controls, as part of the program user interface, add specific
functionality to the application. After placing the controls on the form,
configure their default property values through the stock and custom property
sheets.

Placing Controls

To place a control on the form, select the control from the Component palette
and click and drag the mouse on the form. Use the mouse to move and resize
controls to customize the interface, as in the following illustration. After you
place the controls, you can change their default property values by using the
default property sheet (Object Inspector) and custom property sheets.

Building DAQBench Applications with Delphi • 39

DAQBench Controls on a Delphi Form

Using Property Sheets

Set property value such as Name in the Object Inspector of Delphi. To open
the Object Inspector, select Object Inspector from the View menu or press
<F11>. Under the Properties tab of the Object Inspector, you can set different
properties of the select control.

40 • Building DAQBench Applications with Delphi

Delphi Object Inspector

To open the custom property pages of a control, double click on the control or
right click on the control and select Properties… You can edit most control
properties from the custom property pages. The following figure shows the
DAQBench Graph control property page.

DAQBench DGraph Control Property Page

4.3.3 Programming with DAQBench

The code for each form in Delphi is listed in the Associated Unit (code) window.
You can toggle between the form and Associated Unit window by pressing
<F12>. After placing controls on the form, use their methods in your code and
create event handler routines to process events generated by the controls at
run time.

Using Your Program to Edit Properties
You can set or read control properties programmatically by referencing the
name of the control with the name of the property, as you would any variable
name in Delphi. The name of the control is set in the Object Inspector.

If you want to change the state of an DBoolean control during program
execution, change the Value property from True to False or from False to
True. The syntax for setting the Value property in Delphi is

name.property: = new_value.

DBoolean1.Value := 1;

A property can be an object itself that has its own properties. To set properties
in this case, combine the name of the control, sub-object, and property. For
example, consider the following code for the DAQ Pci91121 control.

Building DAQBench Applications with Delphi • 41

ScanRate is a property of the DAQ control..

Pci91121.ScanRate := 10000;

You can retrieve the value of a control property from your program in the same
way. For example, you can assign the scan rate of a Pci9112 control to a text
box on the user interface.

Edit1.Text := Pci91121.ScanRate;

To use the properties or methods of an object in a collection, use the Item
method to extract the object from the collection. Once you extract the object,
use its properties and methods as you usually would.

DGraph1.YAxis.Maximum := 5;

Consult the Setting the Properties of an ActiveX Control section for more
information about setting properties programmatically.

Using Methods
Each control has defined methods that you can use in your program. To call a
method in your program, use the control name followed by the method name.

Pci91121.StartContAI;

Some methods require parameters, as does the following method.

DGraph1.PlotGraph(data, 0);

In most cases, parameters passed to a method are of type variant. Simple
scalar values can be automatically converted to variants and, therefore, might
be passed to methods. Arrays, however, must be explicitly declared as variant
arrays.

The following example plots data using the graph PlotGraph method.
Consult your Delphi documentation for more information about the variant
data type.

Var
 vData:Variant;

begin
 //Create array in Variant
 vData := VarArrayCreate([0, 99], varDouble);
 for i := 0 to 99 do
 begin
 vData[i] := Random;
 end;
 //Plot Variant Array
 DGraph1.PlotGraph(vData, 0);

end;

42 • Building DAQBench Applications with Delphi

Using Events
Use event handler routines in your source code to respond to and process
events generated by the different DAQBench controls. Events are generated
by user interaction with an object such as a DKnob or by other controls (such
as the DAQ controls) in response to internal conditions (for example,
completed acquisition or an error). You can create a skeleton for an event
handler routine using the Object Inspector in the Delphi environment.

To open the Object Inspector, press <F11> or select Object Inspector from
the View menu. In the Object Inspector, select the Events tab. This tab lists all
the events for the selected control. To create a skeleton function in your code
window, double click on the empty field next to the event name. Delphi
generates the event handler routine in the code window using the default
name for the event handler.

To specify your own event handler name, click in the empty field in the Object
Inspector next to the event, and enter the function name. After the event
handler function is created, insert the code in the event handler.

Introducing the ActiveX Controls of DAQBench • 43

5

Introducing the ActiveX
Controls of DAQBench

5.1 DBoolean Control

DBoolean ActiveX control is an UI component for operating boolean functions.
The maximum bit of the DBoolean is 32. It can be using to indicate the
boolean data like the LED signal. It can also be used to control the bit state of
data like the switch. So, the DBoolean control is very convenient to be used as
the display of digital input and the control of digital output at data acquisition
operation.

Pattern style

Square Button Square Radio Button Square Push Button

LED Button Round Push Button Round Button

Toggle Switch Switch Slide Switch

44 • Introducing the ActiveX Controls of DAQBench

5.2 DSlide Control

The DSlide control represents different types of linear displays, such as the
variant slide, thermometers and tank display. With DSlide control, users can
input or output(display) individual or multiple scalar values. A DSlide can have
multiple pointers (maximum eight) on the control, Each pointer represents one
scalar value.

Pattern style

Wide horizon slide Wide vertical slide Narrow horizon slide

Narrow vertical slide Tank Thermometer

5.3 DKnob Control

The DKnob control represents different types of circular displays, such as the
knob, dial and different type of meters. With DKnob control, users can input or
output(display) individual or multiple scalar values. A DKnob can have
multiple pointers (maximum eight) on the control, Each pointer represents one
scalar value.

Pattern style

Knob Dial Upper meter

 Down meter Left meter Right meter

Introducing the ActiveX Controls of DAQBench • 45

5.4 D7Segment Control

D7Segnment ActiveX control is an UI component for display number using
style of seven segment display. Users can configure the property of control to
specify the digit number, declined, Digit number after point, color of segment,
transparent and signed, etc.

Pattern style

5.5 DLEDMeter Control

DLEDMeter ActiveX control is an UI component for display number using style
of LED Bar display. Users can configure the property of control to specify the
bar number, direction, bar color, ticks, max value and min value, etc.

Pattern style

46 • Introducing the ActiveX Controls of DAQBench

5.6 DGraph Control

The DGraph control is a flexible control used for plotting data. It can display
multiple plots(maximum eight plots). Plotting data refers to the process of
taking a large number of points and updating one or more plots on the graph
with new data. The DGraph control is made up of a hierarchy of objects, as
illustrated in the following figure.

The XAxis object represents the input data points at horizon scale. Users can
set the ViewNumber property to specify the DGraph object how many data
points will display on plot window. The XAxis object can display the time
domain scale when the scale format is “Date” or “Time”. The XAxis object
include one Ticks object that will process different style of ticks color, ticks
mark and ticks label.

The YAxis object represent s the value of data points at the vertical scale.
Users can set the maximum and minimum properties to specify the DGraph
object has the display range at plot window. The YAxis object has many scale
format to display scale label. The YAxis object includes one Ticks object that
will process different style of ticks color ,ticks mark and ticks label.

The DGraph object includes eight Plot objects. Users can specify the property
of each plot object that include line style, line width, pointer style, fill style, line
color, fill color, pointer color, interpolation type.

Introducing the ActiveX Controls of DAQBench • 47

Example

5.7 DChart Control

The DChart control is a flexible control used for charting data. It can display
multiple plots(maximum eight plots). Charting data appends new data points
to an existing plot over time. Charting is used with slow processes where only
few data points per second are added to the graph. The DChart control is
made up of a hierarchy of objects, as illustrated in the following figure.

48 • Introducing the ActiveX Controls of DAQBench

The XAxis object represents the input data points at horizon scale. Users can
set the ViewNumber property to specify how many data points will display on
plot window. The XAxis object can display the time domain scale when the
scale format is “Date” or “Time”. The XAxis object includes one Ticks object
that will process different style of ticks color ,ticks mark and ticks label.

The YAxis object represent the value of data points at vertical scale. Users can
set the Maximum and Minimum property to specify the display range at plot
window. The YAxis object has many scale format to display scale label. The
YAxis object includes one Ticks object that will process different style of ticks
color, ticks mark and ticks label.

The DChart object include eight Plot object. Users can specify the property of
each plot object that include line style, line width, pointer style, fill style, line
color, fill color, pointer color, interpolation type.

Users can set the PlotMode property of DChart to “Overlaid” or “Stacked” to
specify different type for multiple plot data. The UpdateMode property of
DChart can determinate different update method while the charting data
would be continuously input and the plot window would be scrolling.

Example

Introducing the ActiveX Controls of DAQBench • 49

5.8 DXYGraph Control

The DXYGraph control is a flexible control used for drawing XY data. It can
display multiple plots(maximum eight plots). Plotting XY graph data is drawing
the curve of a (x,y) data array. The DXYGraph control is made up of a
hierarchy of objects, as illustrated in the following figure.

The XAxis object represents the value of data points at horizon scale. Users
can set the Maximum and Minimum properties to specify the display range at
plot window. The XAxis object has many scale format to display scale label.
The XAxis object includes one Ticks object that will process different style of
ticks color ,ticks mark and ticks label.

The YAxis object represents the value of data points at vertical scale. Users
can set the Maximum and Minimum property to specify the display range at
plot window. The YAxis object has many scale format to display scale label.
The YAxis object include one Ticks object that will process different style of
ticks color ,ticks mark and ticks label.

The DXYGraph object includes eight Plot object. Users can specify the
property of each plot object that include line style, line width, pointer style, fill
style, line color, fill color, pointer color, interpolation type.

50 • Introducing the ActiveX Controls of DAQBench

5.9 DIntenGraph Control

The DIntenGraph control is a control used for drawing color intensity on XY
plane. It has one ZAxis that represents the color intensity at one point of XY
plane. So, The ZAxis is the 256 color map. Plotting intensity data refers to the
process of taking a large XY plane that include a number of points. The
DIntenGraph control is made up of a hierarchy of objects, as illustrated in the
following figure.

The XAxis object represents the input data points at horizon scale of plane.
Users can set the ViewNumber property to specify how many data points will
display on plot window. The XAxis object can display the time domain scale
when the scale format is “Date” or “Time”. The XAxis object includes one Ticks
object that will process different style of ticks color, ticks mark and ticks label.

Introducing the ActiveX Controls of DAQBench • 51

The YAxis object represents the input data points at vertical scale of plane.
Users can set the ViewNumber property to specify how many data points will
display on plot window. The YAxis object has many scale format to display
scale label. The YAxis object includes one Ticks object that will process
different style of ticks color, ticks mark and ticks label.

The ZAxis object represents the 256 color map. So, the Maximum value of
scale is fixe7d at 255 and the Minimum value is fixed at 0. Users can specify
the color value at each color index. The ZAxis object includes one Ticks object
that will process different style of ticks color, ticks mark and ticks label.

52 • Introducing the ActiveX Controls of DAQBench

5.10 DIntenChart Control

The DIntenChart control is a control used for drawing color intensity on XY
plane. It has one ZAxis that represents the color intensity for one point in the
XY plane. The ZAxis is a 256 color map. Charting data appends new intensity
plane data to plot over time. Charting is used with slow processes where only
few plane data per second are added to the graph. When more plane data are
added, they also then can be displayed on graph, the graph scrolls and the
new plane are added to the right side of the graph while old plane disappear to
the left. The DIntenChart control is made up of a hierarchy of objects, as
illustrated in the following figure.

The XAxis object represents the input data points at horizon scale of plane.
Users can set the ViewNumber property to specify how many data points will
display on plot window. The XAxis object can display the time domain scale
when the scale format is “Date” or “Time”. The XAxis object includes one Ticks
object that will process different style of ticks color, ticks mark and ticks label.

The YAxis object represents the input data points at vertical scale of plane.
Users can set the ViewNumber property to specify how many data points will
display on plot window. The YAxis object has many scale format to display
scale label. The YAxis object includes one Ticks object that will process
different style of ticks color, ticks mark and ticks label.

Introducing the ActiveX Controls of DAQBench • 53

The ZAxis object represents the 256 color map. So, the Maximum value of
scale is fixed at 255 and the Minimum value is fixed at 0. Users can specify
the color value at each color index. The ZAxis object includes one Ticks object
that will process different style of ticks color, ticks mark and ticks label.

5.11 NuDAQ Controls for NuDAQ PCI Cards

The ActiveX controls of NuDAQ PCI cards are packaged to two OCXs that are
Digital.OCX and Multiple.OCX. The Digital.OCX includes digital I/O cards
Pci7200, Pci7230, Pci7233, Pci7234, Pci7248, Pci7249, Pci7250, Pci7252,
Pci7296, Pci7300, Pci7396, Pci7432, Pci7433, Pci7434. The Multiple.OCX
include multiple function I/O cards Pci6208, Pci6308, Pci8554, Pci9111,
Pci9112, Pci9113, Pci9114, Pci9118, Pci9812.

Using the NuDAQ controls, user can easily program to drive the NuDAQ PCI
cards. Each NuDAQ ActiveX control must set the device name define in
NuDAQCfg utility. When the NuDAQ control used at Form window, the
NuDAQ control will be one image bitmap that represents the type of NuDAQ
PCI card. User can set the bitmap invisible when the application is running.

The image bitmap of Digital I/O ActiveX controls

54 • Introducing the ActiveX Controls of DAQBench

The image bitmap of Multiple I/O ActiveX controls

User can use the NuDAQ ActiveX object to control the ADLINK NuDAQ H/W
operations. In general, the operations can divide into two groups.

1. Polling operation :

l DI operation : user can use the ReadDIPort or ReadDILine method of
the control .

l DO operation : user can use the WrieDOPort method of the control .

l AI operation : user can use the ReadSingleAI method of the control .

l AO operation : user can use the WriteSingleAO method of the control .

2. Continuous operations

l DI operation : user can follow the procedures described below:

1. Set the related properties according to your requirement.

2. Use the StartContDI method of the control to start the operation.

3. Receive DI data from DiComplete or DiHalfReady event of control.

4. Use the StopContDI method of control to stop the operation.

l DO operation : user can follow the procedures described below:

1. Set the related properties according to your requirement.

2. Use the StartContDO method of the control to start the operation.

3. When the DO data output operation is complete, the control will fire
the DoComplete event to the program.

4. Use the StopContDO method of control to stop the operation.

l AI operation : user can follow the procedures described below :

1. Set the related properties according to your requirement.

2. Use the StartContAI method of the control to start the operation.

3. Receive AI data from AiComplete or AiHalfReady event of control

4. Use the StopContAI method of control to stop the operation.

Introducing the ActiveX Controls of DAQBench • 55

Within the AI continuous operation, there are two parameters ScaledData ,
ScaledData received In the AiComplete or AiHalfReady event. The two
parameters are described below :

ScaledData as Variant.

This is a scaled data that has been translated from the binary code to the
current AI range value. The transformation depends on the feature of card and
the ReturnType property that users specified.

BinaryCode as Variant.

This is a binary code from the buffer of PCI card. It may include the channel
information. The value depends on the feature of card and the ReturnType
property that users specified.

3. DI/AI continuous data streamToFile operations

PCI7200, PCI7300, PCI9111, PCI9112, PCI9113, PCI9114, PCI9118 and
PCI9812 controls can provide the continuous data streamToFile
operation.User has to follow the procedures described below :

1. Set streamToFile property of the control to True.

2. Use the StartContAI or StartContDI method to start the
operation. User has to pass the file name as the argument to the
method. For example :

 Pci91111.StartContAI("f:\DAQBench\Samples\record.dat"),

 Pci72001.StartContDI("f:\DAQBench\Samples\record.dat"))

3. The AI or DI continuous data will save to the file.

4. You can also receive the data from AiComplete/DiComplete or
AiHalfReady/DiHalfReady event.

5. Use the StopContAI or StopContDI method to stop the operation.

56 • Introducing the ActiveX Controls of DAQBench

The data files is written in binary format. Since a binary file can not be read by
the normal text editor and can not be used to analyze the accessed data by
Excel, DAQBench provides a convenient tool DAQCvt to convert the binary
file to the file format read easily. The default location of this utility is
<DAQBench InstallDir>\Util directory. The DAQCvt main window is as the
following figure:

The DAQCvt main window includes two frames. The upper frame, Input File
frame is used for the source data file and the lower frame is used for the
destination file.

Introducing the ActiveX Controls of DAQBench • 57

To load the source binary data file , type the binary data file name in File
Path field or click Browser button to select the source file from Input File frame,
and then click Load button. As the file is loaded, the information related to the
data file, e.g. data type, data width, AD Range, … etc., are shown in the
corresponding fields in “Input File” frame, and the default converted data file
path and format are also listed as the figure below.

The default destination file with a .cvt extension is located in the same
directory as the source one. To change the default setting, type the file path
you wish or click the Browser button from Output File frame to select the
destination file location.

DAQCvt provides three types of data format conversion.

Scaled data to text file :

The data in hexadecimal format is scaled to engineering unit (voltage,
ample, … etc) according to the card type, data width and data range and then
written to disk in text file format. This type is available for the data accessed
from continuous AI operation only.

Scaled data to binary file (float) :

The data in hexadecimal is scaled to engineering unit (voltage, ample, … etc)
according to the card type, data width and data range and then written to disk
in binary file format. This type is available for the data accessed from
continuous AI operation only.

58 • Introducing the ActiveX Controls of DAQBench

Binary codes to text file :

The data in hexadecimal format or converted to a decimal value is written to
disk in text file format. If the original data includes channel information, the raw
value will be handled to get the real data value. This type is available for the
data accessed form continuous AI and DI operations.

The data separator in converted text file is selectable among space, comma
and Tab.

If you want to add title/head which includes the card type information at the
beginning of file, check the “Title/Head” box.

After setting the properties (File Path, Format, … etc) related to the converted
file, you can push Start Convert button from the Output File frame to perform
the file conversion.

5.12 NuDAM Controls for NuDAM Modules

The ActiveX controls of NuDAM modules are package to four OCXs which are
NDDigital.OCX , NDAnalog.OCX, NDCounter.OCX and NDHost.OCX. The
NDDigital.OCX includes digital I/O module ND6050, ND6052, ND6053,
ND6054, ND6056, ND6058, ND6060, ND6063. The NDAnalog.OCX includes
multiple function module ND6011, ND6012, ND6013, ND6014, ND6017,
ND6018, ND6021, ND6024. The NDCounter.OCX includes counter module
ND6080. The NDHost.OCX is NDHost control that is software object for
representing the host computer. It would be use to process synchronization
and watch dog function.

Using the NuDAM control, Users must us e the MSComm ActiveX control of
Microsoft. The MSComm control is public because it is included at Windows
95 / 98 / NT/2000. User can configure the COM port and open/close RS232
COM port by using the MSComm control. When the MSComm control open
the COM port, user can assign the CommID property of MSComm to the
PortHandle property of NuDAM control. Then, users can easily program to
drive the ADLINK NuDAM modules.

VB Example:

 MSComm1.CommPort = 1
 MSComm1.Setting = “9600,n,8,1”
 MSComm1.PortOpen = True
 ND60501.PortHandle = MSComm1.CommID

 ND60501.DigitalOutput = 7

Introducing the ActiveX Controls of DAQBench • 59

The image bitmap of Digital I/O ActiveX controls

The image bitmap of Analog I/O ActiveX controls

The image bitmap of Counter ActiveX controls

The image bitmap of Host ActiveX controls

5.13 Analysis Control

With the DAQBench analysis control, you can perform operations such as
matrix and array calculations, complex number analysis, statistical analysis
and Fast-Fouri-Transform. User can receive data from DAQ or NuDAM
controls. Then pass data to the DQAnalysis control to process analysis work.
The result of analysis can be pass to the DGraph control to display.

The bitmap of DQAnalysis Control

VB Example:

Dim tMean As double

Dim data(0 to 99)

For I=0 to 99

 Data(i) = Rnd

Next

tMean = DQAnalysis.Mean(data)

60 • Introducing the ActiveX Controls of DAQBench

5.14 Equipment Controls

The DBEquip.OCX includes five ActiveX control for some equipment pattern
of industry automation such as Pump, Pipe, Motor, Tank, Valve. These
controls can be use to represent the equipment when users develop the MMI
applications of industry automation. User can select variant style of each
equipment control.

The pattern style of DMoter control

The pattern style of DPump control

The pattern style of DPipe control

The pattern style of DTank control

The pattern style of DValve control

Introducing the ActiveX Controls of DAQBench • 61

5.15 ExcelLinker Control

The ExcelLinker.OCX includes one ActiveX control for linking DAQ data to
Microsoft Excel Application. The spreadsheet is one of the most commonly
used tools among engineering, manufacturing, and management personnel.
Using ExcelLinker ActiveX control, scientists and engineers can further
increase productivity by integrating DAQ data collection directly into the
Microsoft Excel worksheets.

The description of using ExcelLinker control is listed below.

Specification:

1. Specify the file name of Excel, may be a new one or a exist file.

2. Specify the worksheet name in indicated excel file.

3. Specify the cell range for putting DAQ data in indicated worksheet.

In run time:

1. Retrieve DAQ data form DAQ ActiveX control of DAQBench.

2. Call ExcelLinking(Data) method of ExcelLinker control to linking Excel
application. If excel have not been run then will be automatically
invoked.

3. ExcelLinker will select the specified worksheet and put DAQ data into
the specified cells.

4. Last, ExcelLinker will command Excel application to recalculate
theFormulas in worksheet.

62 • Introducing the ActiveX Controls of DAQBench

5.16 WebSnapshot Control

The WebSnapshot.OCX includes one ActiveX control that can snapshot the
image of application and export the image to web through http protocol. The
Internet browser is common and public tool on Internet. Using WebSnapshot
ActiveX control, user can easily use Internet browser to remote monitoring the
application image because the WebSnapshot ActiveX control can
automatically create template HTML file that would refresh the JPG file of
application image.

The description of using WebSnapshot control is listed below.

Specification:

1. Specify the file name of HTML, may be a new one or a exist file.

2. Specify the file name of JPG for storing the image of application.

3. Specify the operate mode, may be automatic or manual updated.

4. Specify the interval time of refresh image in automatic updated.

5. Create HTML file of refresh JPG file.

In run time:

1. Automatically capture image of application to the JPG file.

2. Manually, Call CaptureImage() method to capture image of application
to the JPG file.

3. User can use Internet browser to browse the specified HTML file in
remote machine.

Introducing the ActiveX Controls of DAQBench • 63

5.17 DBAccess Controls

The DBAccess.OCX includes three ActiveX controls that can access
database through ODBC. Open Database Connectivity (ODBC) is a standard
or open application programming interface (API) for accessing a database. By
using ODBC statements in a program, you can access datas in a number of
different databases, including Access, dBase, DB2, Excel, and Text. Using the
ActiveX controls of DBAccess, programmers don’t need to understand the
detail ODBC API and only need to specify some information by using friendly
property page, then user can easily write data to, read data from and delete
data from Database.

The processes of using DBAccess controls are listed below.

DBWrite control

Specification:

1. Specify the data source name (DSN) of Database on ODBC.

2. Specify the tables and columns for writing data in specified Database

In run time:

1. Retrieve DAQ data form DAQ ActiveX control of DAQBench.

2. Call ExecuteWrite(DataArray) method to write data to specified
Database.

DBRead control

Specification:

1. Specify the data source name (DSN) of Database on ODBC.

2. Specify the tables and columns for reading data in specified Database.

3. Specify the query condition.

In run time:

1. Call ExecuteRead(DataArray) method to read data from specified
Database.

2. Uses can pass DataArray to DGraph control to display

64 • Introducing the ActiveX Controls of DAQBench

DBDelete control

Specification:

1. Specify the data source name (DSN) of Database on ODBC.

2. Specify the table for removing data in specified Database.

3. Specify the remove condition

In run time:

1. Call ExecuteDelete() method to remove data from specified Database.

Introducing the ActiveX Controls of DAQBench • 65

5.18 OPCClient Control

The OPCClient.OCX includes one ActiveX control that can connect, access
data and disconnect the OPC Server. The OPC (OLE for Process Control) is
constituted by OPC Foundation. It will be a standard interface for accessing
process control data in industry automation. The OPC is the Client/Server
model and based on the technology of COM/DCOM. Using OPC interface you
can easily access process control data across Internet and can fulfill the
integration between manufacture system and business system. OPC Server
is supplied by hardware vendor. The OPCClient control use OPC interface to
connect, access and disconnect to various OPC servers. Using the OPCClient
control, You don’t need to know and program the OPC interface and only need
to specify some information by a friendly user interface.

66 • Introducing the ActiveX Controls of DAQBench

The following steps show how to use OPCClient control.

1. Specify the OPC Server ProgID and Server IP Address of OPC Server
and us er account. If the OPC server is on the local machine then you
do not care the IP Address and user account. About the OPC Server
ProgID, user can use “ENUM” button to browser the OPC server
ProgID or just keyin the ProgID of the OPC server(You can find the
OPC server ProgID in each OPC server documents).

Property page “OPC Server” of OPCClient ActiveX control

2. Create the OPC Groups that would own some data items and some
attributes (ex. Update rate…)

Property page “OPC Group” of OPCClient ActiveX control

Introducing the ActiveX Controls of DAQBench • 67

3. Create the OPC Items for OPC Groups.

Property page “OPC Item” of OPCClient ActiveX control

4. In run time, you must first connect OPC server.

Result = OPCClient1.Connect()

5. Then, you can directly access OPC item as read/write variables.
//Read
OPCClient1.Group(0).ReadItems
Value1 = OPCClient1.Group(0).Item(0).Value
Value2 = OPCClient1.Group(0).Item(2).Value
//Write
OPCClient1.Group(0).Item(1).Value = 5.6
OPCClient1.Group(0).Item(3).Value = 3

5. Last, you must disconnect OPC server.

OPCClient1.Disconnect

68 • Introducing the ActiveX Controls of DAQBench

5.19 Thermocouple Control

The ADLINK Thermocouple control supports three types of Thermocouple.
They are the J-type, K-type and T-type Thermocouple. User can just assign
the voltage value as the control method’s input parameter, then the
Thermocouple control converts the voltage value to the temperature value. A
Thermocouple control example is described as below:
Dim Seekback_Temperature as Variant
Dim Temperature as Variant
Seekback_Temperature = Thermocouple1.SeebeckTemperature(298.3, 0)
Temperature=Thermocouple1.Temperature(34521.11,

Seekback_Temperature, 1)

5.20 DDE/NetDDE Function

The DAQBench User Interface objects (except DGraph, DXYGraph and
DIntenGraph objects) and Equipment objects now support the DDE
(Dynamic Data Exchange) client capability. Therefore they can connect
with DDE server applications for exchanging data. For example, DAQBench
now can animate graphics with values coming from any DDE server or share
data with DDE server via the DDE protocol. (Example : ISaGRAF target)

In order to connect with DDE server, user first must assign the appropriate
properties values for the LinkTopic, LinkItem and LinkMode items in the
DAQBench property page. These items are used to identify the DDE
conversion. After identify it, user then can use the UI or equipment object’s
DDE methods to control the communication between DDE server and
DAQBench.

The DAQBench DDE property setting example for UI and equipments object
is described as below :

Control.LinkTopic= Application|topic (Application_name|topic_name);

Control.LinkItem=item (item_name)

Control.LinkMode=1 (Automatic) or others

There are three different link modes supported – 1(automatic), 2(manual), and
3(notify). If you set the LinkMode property to automatic, whenever the data
specified by the combination of the LinkTopic and LinkItem changes, the
control receives the new data automatically. For the controls having Change
event, the event occurs. If you set the LinkMode property to manual or notify,
the control is not update automatically and you mus t use the LinkRequest
method to obtain new data from the DDE server. The difference of the two
modes is that with notify link, the LinkNotify event occurs whenever the source
has new data to supply to the control. You can also stop the conversation at
any time by setting the LinkMode property to 0(None).

Introducing the ActiveX Controls of DAQBench • 69

Please refer to the DAQBench function reference manual for the details of
DDE properties, events and methods of User Interface and equipment
objects.

In DAQBench, the UI and equipment objects can provide the DDE capability.
The detail connect capabilities are described as below :

l In DBoolean object , the DDE conversion link with the value of the Object.
l In D7Segment object , the DDE conversion link with the value of the

Object.
l In DLEDMeter object , the DDE conversion link with the value of the

Object.
l In DSlide object , the DDE conversion link with the Pointer value of the

Object. (The pointer1 to pointer8 can support DDE.)
l In DKnob object , the DDE conversion link with the Pointer value of the

Object. (The pointer1 to pointer8 can support DDE.)
l In DChart object , the DDE conversion link with the Plot value of the

object (The polt1 to polt8 can support DDE)
l In DMotor object , the DDE conversion link with the On/Off state of the

Object.
l In DPipe object , the DDE conversion link with the Fill state of the Object.
l In DPump object , the DDE conversion link with the FanMode state of the

Object.
l In DTank object , the DDE conversion link with the Value of the Object.
l In DValve object , the DDE conversion link with the State of the Object.
Based on the DAQBench DDE functions, DAQBench also can provide the
NetDDE function. The NetDDE provides DAQBench the additional
capabilities to get / set data of DDE server through the Microsoft Network. It is
the remote control capability. User can use this capability on Win
95/98/NT/2000 OS platform.

The NetDDE property setting example is described as below :

Control.LinkTopic= \\Node\Application|topic

(\\ Node_name\Application_name|topic_name; Node_name is the name of
the node(computer) which in the Microsoft network neighborhood. The DDE
server is inside this machine.)

Control.LinkItem=item (item_name)

Control.LinkMode=1 (Automatic)

70 • Introducing the ActiveX Controls of DAQBench

Depend on the Window OS platform, there are different ways to start the DDE
Service.

l Window NT:

If you are using the NetDDE service on Windows NT, you need to set up DDE
share for these nodes.

About the configuring of DDE Share, please follow the procedures described
below:

u To add a DDE Share on Windows NT operating systems.

1. 1.On the Start menu of the Windows Taskbar, point to Run. In the Run
dialog box that appears, type DDESHARE and then click OK. The DDE
Share program’s main window appears.

2. From the DDE Shares menu, click DDE Shares. The DDE Shares dialog
box appears.

3. Click Add a Share. The DDE Share Properties dialog box appears.
4. In the Share Name box, enter the name of the DDE server application

and “|*” for the Share name. For example, if your server application name
is ADLDDE, enter ADLDDE|*.

5. In the Application Name box, enter the name of the application again.
6. In the Topic Name box, enter “*”.
7. Click Permissions. The DDE Share Name Permissions dialog box

appear.
8. Select “Everyone” in the Name list and “Full Control” as the Type of

Access.
9. Click OK to exit the DDE Share Name Permissions dialog box and return

to the DDE Share Properties dialog box.
10. Click OK to return to the DDE Shares dialog box.

Now the Share you created will be included in the DDE Shares list.

(For more information on using the DDE Share program, see your Microsoft
documentation.)

u To configure trusted DDE share.

1. From the DDE Shares menu, click DDE Shares.
2. In the DDE Shares dialog box that appears, select the DDE share for

which you want to set up a trust relationship.
3. Click Trust Share.
4. The Trusted Share Properties dialog box appears.
5. Click the Start Application Enable and Initiate to application Enable

options.
6. Click OK.

Introducing the ActiveX Controls of DAQBench • 71

l Window 95 :
To run NetDDE program in Windows95, you must add a shortcut for
Netdde.exe to the Startup group(The Netdde.exe is in the Window95
directory.). To do so, use the following four steps:

1. Use the right mouse button to click an empty space on the taskbar, and
then click Properties on the menu that appear.

2. On the Start Menu Program tab, click Add.

3. Use the Create Shortcut Wizard to create a shortcut for Netdde.exe in the
Windows folder.

4. After you create the shortcut, restart your computer.

72 • NuDAQ Configuration

6

NuDAQ Configuration

Before you begin your NuDAQ application development, you must configure
your NuDAQ devices. NuDAQ needs the device configuration information to
program your hardware properly.

In most cases you follow the same general steps:

1. Install your application software.

2. If your platform is Windows 98 or Windows 2000, you have to install DAQ
hardware divice when you play NuDAQ card and enter Windows. Please
refer to “NuDAQ PCI and NuIPC CompactPCI DAQ cards software
Installation Guide”.

3. Configure your device using the NuDAQ Configuration Utility.

4. Define your device using the NuDAQ Configuration Utility.

6.1 Using NuDAQ Configuration Utility

Using the NuDAQ Configuration Utility, you can:

1. Registry NuDAQ device drivers to Windows in your system (NT only).

2. Configure the Continuous AI/AO/DI/DO buffers of NuDAQ cards.

3. Define NuDAQ devices that may be local or remote device in your system.

4. Save the NuDAQ device configuration to the configuration file.

NuDAQ Configuration • 73

The utility, NuDAQCfg.EXE, is installed in your DAQBench\PCIDAQ directory.

6.1.1 Register NuDAQ cards for Windows NT

The NuDAQ devices must be registered at Window Registry before the
NuDAQ applications are run. You can use NuDAQ Configuration Utility to do
the registry of NuDAQ cards. On NuDAQ Configuration Utility window, Select
“Registry” panel and view the window as below.

74 • NuDAQ Configuration

This Panel is used for users to make the registry of local NuDAQ PCI device
drivers, remove installed drivers and modify the allocated buffer sizes of AI,
AO, DI and DO. Click “New” or “Modify” button and popup a Driver
Configuration dialog for specifying the allocated buffers as below.

The allocated buffer sizes of AI, AO, DI, DO represent the sizes of contiguous
Initially Allocated memory for continuous analog input, analog output, digital
input, digital output respectively. Its unit is KB, i.e. 1024 bytes. Device driver
will try to allocate these sizes of memory at system startup time. The size of
initially allocated memory is the maximum memory size that continuous
AI/AO/DI/DO can be performed on this type of cards plugged on this local
machine. It will induce an unexpected result in that the data size of continuous
operation exceeds the initially allocated size.

NuDAQ Configuration • 75

After the device configurations of the driver you select is finished, click “OK” to
register the driver and return to the NuDAQCfg main window. The driver you
just registered will be shown on the registered driver list as the following
figure:

Then you can Click “Exit” button to exit the driver registry utility. To make the
registered drivers work, you have to restart Windows NT system.

6.1.2 Configure NuDAQ cards for Windows 98 or Windows 2000

Windows 98/2000 and NuDAQ PCI cards work very well together because
Windows 98/2000 includes Plug and Play capabilities and standard drivers for
PCI card devices. On Windows 98/2000, NuDAQ cards don’t need to do
registry work but they must allocate memory buffer for continuous operation.
You can use NuDAQ Configuration Utility to specify the size of contiguous
Initially Allocated Memory for analog input, analog output, digital input and
digital output. On NuDAQ Configuration Utility window, Select “Configure”
panel and view the window as below.

76 • NuDAQ Configuration

The allocated buffer sizes of AI, AO, DI, DO represent the sizes of contiguous
Initially Allocated memory for continuous analog input, analog output, digital
input, digital output respectively. Its unit is KB, i.e. 1024 bytes. Device driver
will try to allocate these sizes of memory at system startup time. The size of
initially allocated memory is the maximum memory size that continuous
AI/AO/DI/DO can be performed on this type of cards plugged on this local
machine. It will induce an unexpected result in that the data size of continuous
operation exceeds the initially allocated size.

After the device configurations of the driver you select is finished, click “Apply”
to register the driver.

6.1.3 Define local device

You can click Add Local Device button and will popup one dialog box. In the
list box of Add Local NuDAQ Device dialog, you can find some ADLINK
NuDAQ cards that are currently installed on this machine. Then, you can
select one card and enter its device name. Click Add button and this local
NuDAQ card is defined and addded in the list box of Define Device Panel.

The Dialog of Add Local Device

NuDAQ Configuration • 77

6.1.4 Define remote device

You can click Add Remote Device button and will popup one dialog box. You
must first connect to the NuDAQ RDA Server. So, you would specify the IP
address or name of remote machine then click Connect button. If the
connection is successful then the defined devices of RDA Server will be
retrieved and adding in the list box of dialog. Otherwise, An error dialog will be
popup that notify the connection is failed for RDA Server. You can select one
remote device and enter its device name. Click Add button and this remote
NuDAQ card is defined and added in the list box of Define Device Panel.

The Dialog of Add Remote Device

The defination of NuDAQ PCI cards

78 • NuDAQ Configuration

6.2 NuDAQ Remote Device Access

The Remote Device Access (RDA) feature lets you use ADLINK data
acquisition (DAQ) devices plugged into other computers on your network. This
feature can works with programs using NuDAQ PCI ActiveX controls of
DAQBench. Your programs need no modifications to use this feature. Access
to the remote devices are transparent to your program.

Using NuDAQ Remote Device Access:

1. Create one or more NuDAQ RDA servers.

a. Install DAQBench.

b. Install and configure your data acquisition (DAQ) devices.

Make sure your device drivers are starting properly by viewing the drivers
status at Devices dialog of Control Panel. Open the NuDAQ RDA Server Utility
from Start»Programs» ADLINK DAQBench for Windows menu. If you want
this computer to become an RDA server every time it starts up, place a
shortcut to the NuDAQ RDA Server Utility in your Startup folder. The RDA
server must remain running; your computer cannot act as a n RDA server if the
server program is not running.

2. Create one or more NuDAQ RDA clients.

a. Install DAQBench.

Open the NuDAQ Configuration Utility from Start»Programs»ADLINK
DAQBench for Windows menu. Click Add Remote Device. Locate the
computer that you have designated as the RDA server and connect to the
server. You must enter the IP address or name of the RDA server into the
Remote Machine field and click on the Connect button.

3. Select the device you want to use and enter the device name.

A list of remote devices installed and defined on that server appears in the list
box. Select one of these devices by clicking once on its item row and enter a
unique device name into Device Name field, then click Ok button. The new
defined device will now appear in the list box and its location will be the IP
address or name of the RDA server. The device name you have defined is the
one you will use in your local programs. To connect to a different computer
and its devices, repeat steps 2 and 3.

4. Undo your device name assignment to a remote device.

To undo the device name assigned to a remote device. highlight the device
you want to undo and click Remove button.

NuDAQ Configuration • 79

6.2.1 NuDAQ RDA Server

An NuDAQ RDA server is any computer on which DAQBench is installed, on
which one or more DAQ devices are installed and configured, and on which
the NuDAQ RDA Server Utility is running. The NuDAQ RDA Server Utility is
the program on your RDA server that enables its RDA server capability. The
utility, RDASvr.EXE, is installed in your DAQBench\PCIDAQ directory. The
“NuDAQ RDA server” window is shown as below.

6.2.2 RDA Considerations

Just as two different applications running on the same computer can use the
same data acquisition (DAQ) device, two different NuDAQ RDA clients can
use the same remote device on an RDA server. While this flexibility is usually
a good thing, nothing prevents one RDA client from interfering with another
client’s use of a remote device.

If you have assigned a local device name to a remote device, DAQBench
attempts to connect to the RDA server computer each time it loads in your
client computer. If your RDA server is not turned on, your client computer will
appear to stall for a while during this process. This stalling is the timing out of
the attempt to connect to the server computer. When the connection fails, any
attempt to use the remote device will return FALSE.

A computer can be both an RDA client and an RDA server at the same time.
Clients and servers can run any mix of Windows 98 and Windows NT 4.0 and
Windows 2000. A program running on the RDA server can use a device local
to that server while a program running on an RDA client is using the same
device. You can open and close the NuDAQ ActiveX control of DAQBench on
RDA client computers without affecting the state of devices on RDA servers to
which the client has assigned local device name.

80 • Distrbution of Applications

7

Distribution of Applications

About the distribution of application with DAQBnech ActiveX control objects,
please contact ADLINK for the ADLINK DAQBenech object distribution policy.

e-mail : service@ADLINK.com.tw

e-mail : sw@ADLINK.com.tw

