

ADL-GPIB

for PC Compatibles

Function Reference Manual

@Copyright 1997-2005 ADLink Technology Inc.
All Rights Reserved.

Manual Rev 4.06: Jul. 30, 2004

The information in this document is subject to change without prior notice in order to improve reliability, design and function
and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of
the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may
be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the
manufacturer.

Trademarks
IBM PC is a registered trademark of International Business Machines Corporation. Intel is a registered trademark of Intel
Corporation. Other product names mentioned herein are used for identification purposes only and may be trademarks
and/or registered trademarks of their respective companies.

Contents • i

CONTENTS

How to Use This Manual .. iv

Using ADL-GPIB Functions.. 5

1.1 The Fundamentals of Building Windows 2000/NT/98 Application with ADL-GPIB
 5
1.1.1 Creating a Windows 2000/NT/98 ADL-GPIB Application Using Microsoft Visual C/C++ 5

1.1.2 Creating a Windows 2000/NT/98 ADL-GPIB Application Using Microsoft Visual Basic 5

1.2 ADL-GPIB Functions Overview ..7

Function Description 10

2.1 Data Types 10
2.2 IEEE 488 Function Reference...11

2.2.1 ibask 11

2.2.2 ibbna 14

2.2.3 ibcac 14

2.2.4 ibclr 15

2.2.5 ibcmd 15

2.2.6 ibcmda 16

2.2.7 ibconfig 16

2.2.8 ibdev 19

2.2.9 ibdma 20

2.2.10 ibeot 20

2.2.11 ibeos 21

2.2.12 ibfind 22

2.2.13 ibgts 22

2.2.14 ibist 23

2.2.15 iblines 23

2.2.16 ibln 24

2.2.17 ibloc 25

2.2.18 ibonl 25

2.2.19 ibnotify 26

2.2.20 ibpad 27

2.2.21 ibsad 27

2.2.22 ibpct 28

2.2.23 ibppc 29

ii • Contents

2.2.24 ibrd 29

2.2.25 ibrda 30

2.2.26 ibrdf 31

2.2.27 ibrpp 32

2.2.28 ibrsc 32

2.2.29 ibrsp 33

2.2.30 ibrsv 33

2.2.31 ibsic 34

2.2.32 ibsre 34

2.2.33 ibstop 35

2.2.34 ibtmo 35

2.2.35 ibtrg 36

2.2.36 ibwait 37

2.2.37 ibwrt 38

2.2.38 ibwrta 38

2.2.39 ibwrtf 39

2.3 Multi-Device IEEE 488.2 Function Reference..41
2.3.1 AllSpoll 41

2.3.2 DevClear ... 41

2.3.3 DevClearList ... 41

2.3.4 EnableLocal... 42

2.3.5 EnableRemote.. 42

2.3.6 FindLstn 42

2.3.7 FindRQS .. 43

2.3.8 PassControl ... 43

2.3.9 PPoll 44

2.3.10 PPollConfig ... 44

2.3.11 PPollUnConfig .. 45

2.3.12 RcvRespMsg .. 45

2.3.13 ReadStatusByte .. 46

2.3.14 Receive 46

2.3.15 ReceiveSetup.. 47

2.3.16 ResetSys 47

2.3.17 Send 47

2.3.18 SendCmds .. 48

2.3.19 SendDataBytes... 48

2.3.20 SendList 49

2.3.21 SendIFC 49

2.3.22 SendLLO.. 50

Contents • iii

2.3.23 SendSetup .. 50

2.3.24 SetRWLS .. 51

2.3.25 TestSRQ 51

2.3.26 TestSys 51

2.3.27 Trigger 52

2.3.28 TriggerList... 52

2.3.29 WaitSRQ .. 53

Appendix A Status Codes ... 54

Appendix B Error Codes.. 55

iv • Using ADL-GPIB Functions

How to Use This Manual

This manual is designed to help you use the ADL-GPIB software driver for ADLINK GPIB interface.
The manual describes how to install and use the software library to meet your requirements and help
you program your own software applications. It is organized as follows:

 Chapter 1, "Using ADL-GPIB Functions" gives the important information about how to apply the
function descriptions in this manual to your programming language and environment.

 Chapter 2, "Function Description" gives the detailed description of each function call ADL-GPIB
provided.

 Appendix A, "Status Codes" lists the status codes of ibsta for GPIB, as well as their meanings.

 Appendix B, "Error Codes " lists all the error codes of iberr for GPIB.

Using ADL-GPIB Functions • 5

1

Using ADL-GPIB Functions

ADL-GPIB is a software driver for ADLINK GPIB interface.

1.1 The Fundamentals of Building Windows 2000/NT/98 Application with

ADL-GPIB

1.1.1 Creating a Windows 2000/NT/98 ADL-GPIB Application Using Microsoft Visual

C/C++

To create a data acquisition application using ADL-GPIB and Microsoft Visual C/C++, follow these
steps after entering Visual C/C++:

step 1. Open the project in which you want to use ADL-GPIB. This can be a new or existing project

step 2. Include header file ADGPIB.H in the C/C++ source files that call ADL-GPIB functions.

ADGPIB.H contains all the function declarations and constants that you can use to develop
your data acquisition application. Incorporate the following statement in your code to include
the header file.

 #include “ADGPIB.H”

step 3. Build your application.

Setting the appropriate compile and link options, then build your application by selecting the
Build command from Build menu (Visual C/C++ 4.0). Remember to link ADL-GPIB’s import
library GPIB-32.LIB.

1.1.2 Creating a Windows 2000/NT/98 ADL-GPIB Application Using Microsoft Visual

Basic

To create a data acquisition application using ADL-GPIB and Visual Basic, follow these steps after
entering Visual Basic:

step 1. Open the project in which you want to use ADL-GPIB. This can be a new or existing project

6 • Using ADL-GPIB Functions

Open a new project by selecting the New Project command from the File menu. If it is an
existing project, open it by selecting the Open Project command from the File menu. Then
the Open Project dialog box appears.

Changed directory to the place the project file located. Double-click the project file name in
the File Name list to load the project.

step 2. Add file ADGPIB.BAS into the project if this file is not included in the project. This file contains
all the procedure declarations and constants that you can use to develop your data
acquisition application.

step 3. Design the interface for the application.

To design the interface, you place the desired elements, such as command button, list box, text
box, etc., on the Visual Basic form. These are standard controls from the Visual Basic Toolbox. To
place a control on a form, you just move pointer to Toolbox, select the desired control and draw it
on the form. Or you can double-click the control icon in the Toolbox to place it on the form.

step 4. Set properties for the controls.

To view the property list, click the desired control and then choose the Properties command from

the View menu or press F4, or you can also click the Properties button on the toolbar.

step 5. Write the event code.

The event code defines the action you want to perform when an event occurs. To write the event
code, double-click the desired control or form to view the code module and then add code you
want. You can call the functions that declared in the file ADGPIB.BAS to perform data acquisition
operations.

step 6. Run your application.

To run the application, choose Start from the Run menu, or click the Start icon on the toolbar

(you can also press F5).

step 7. Distribute your application.

Using ADL-GPIB Functions • 7

Once you have finished a project, you can save the application as an executable (.EXE) file by
using the Make EXE File command on the File menu. And once you have saved your application
as an executable file, you've ready to distribute it. When you distribute your application,
remember also to include the ADL-GPIB’s DLL and driver files.

1.2 ADL-GPIB Functions Overview

ADL-GPIB functions are grouped to the following classes:

• IEEE 488 Device Level Function Group
Function Description
ibask Return the current setting value of the selected

configuration item
ibbna Set the access board of a device
ibclr Clear a specific device
ibconfig Set the software configuration parameters
ibdev Open and initialize a device
ibeos Configure the end-of-string (EOS) termination mode

or character
ibeot Enable or disable the automatic assertion of the

GPIB EOI line atthe end of write I/O operations
ibln Check for the presence of a device on the bus
ibloc Go to local
ibonl Place the device online or offline
ibpad Set the primary address
ibpct Pass control to another GPIB device with Controller

capability
ibppc Configure Parallel polling
ibrd Read data from a device into a buffer
ibrda Read data asynchronously from a device into a

buffer
ibrdf Read data from a device into a file
ibrdi Read data from a device into a buffer
ibrdia Read data asynchronously from a device into a

buffer
ibrpp Perform a parallel poll
ibrsp Perform a serial poll
ibsad Set or disable the secondary address
ibstop Abort asynchronous I/O operation
ibtmo Set or disable the I/O timeout period
ibtrg Trigger selected device
ibwait Wait for GPIB events
ibwrt Write data to a device from a buffer
ibwrta Write data asynchronously to a device from a buffer
ibwrtf Write data to a device from a file

• IEEE 488 Board Level Function Group
Function Purpose

ibask Return the current setting value of the selected
configuration item

ibcac Become Active Controller state
ibcmd Send GPIB commands
ibcmda Send GPIB commands asynchronously
ibconfig Set the software configuration parameters
ibdma Enable or disable DMA

8 • Using ADL-GPIB Functions

ibeos Configure the end-of-string (EOS) termination mode
or character

ibeot Enable or disable the automatic assertion of the
GPIB EOI line atthe end of write I/O operations

ibfind Open and initialize a GPIB board
ibgts Go from Active Controller state to Standby Controller

state
ibist Set or clear the board individual status bit for parallel

polls
iblines Return the status of the GPIB control lines
ibln Check for the presence of a device on the bus
ibloc Go to local
ibonl Place the interface board online or offline
ibpad Set the primary address
ibppc Configure Parallel polling
ibrd Read data from a device into a buffer
ibrda Read data asynchronously from a device into a buffer
ibrdf Read data from a device into a file
ibrdi Read data from a device into a buffer
ibrdia Read data asynchronously from a device into a buffer
ibrpp Perform a parallel poll
ibrsc Request or release system control
ibrsv Request service and change the serial poll status

byte
ibsad Set or disable the secondary address
ibsic Assert interface clear
ibsre Set or clear the Remote Enable (REN) line
ibstop Abort asynchronous I/O operation
ibtmo Set or disable the I/O timeout period
ibwait Wait for GPIB events
ibwrt Write data to a device from a user buffer
ibwrta Write data asynchronously to a device from a user

buffer
ibwrtf Write data to a device from a file

• IEEE 488.2 Function Group
Routine Purpose
AllSpoll Serial polling all devices
DevClear Clear a single device
DevClearList Clear multiple devices
EnableLocal Enable operations from the front panel of devices (leave

remote programming mode)
EnableRemote Enable remote GPIB programming for devices
FindLstn Find listening devices on the GPIB
FindRQS Determine which device is requesting service
PassControl Pass control to another device with Controller capability
PPoll Perform a parallel poll on the GPIB
PPollConfig Configure a device for parallel polls
PPollUnconfig Unconfigure devices for parallel polls
RcvRespMsg Read data bytes from a device addressed to talk
ReadStatusByte Conduct serial polling single device
Receive Read data bytes from a device
ReceiveSetup Address a device to be a Talker and the interface board

to bea Listener
ResetSys Reset and initialize devices
Send Send data bytes to a device
SendCmds Send GPIB command bytes
SendDataBytes Send data bytes to devices addressed to listen

Using ADL-GPIB Functions • 9

SendIFC Reset the GPIB by sending interface clear
SendList Send data bytes to multiple GPIB devices
SendLLO Send the Local Lockout (LLO) message to all devices
SendSetup Set up devices to receive data in preparation for

SendDataBytes
SetRWLS Place devices in remote with lockout state
TestSRQ Determine the current state of the GPIB Service Request

(SRQ) line
TestSys Trigger a devices to conduct self-tests
Trigger Trigger a device
TriggerList Trigger multiple devices
WaitSRQ Wait until a device asserts the GPIB Service Request

(SRQ) line

10 • Function Description

2

Function Description

This chapter contains the detailed description of ADL-GPIB functions, including the ADL-GPIB data
types and function reference. The functions are arranged alphabetically in 3.2 Function Reference.

2.1 Data Types

We defined some data types in ADGPIB.H. These data types are used by ADL-GPIB library. We
suggest you to use these data types in your application programs. The following table shows the
data type names, their ranges and the corresponding data types in C/C++, Visual Basic and Delphi
(We didn’t define these data types in ADGPIB.BAS and ADGPIB.PAS. Here they are just listed for
reference)

Type Type Name Description Range

C/C++

(for 32-
bit

compiler
)

Visual Basic Pascal (Delphi)

U8 8-bit ASCII
character

0 to 255 unsigned
char

Byte Byte

I16 16-bit signed
integer

-32768 to 32767 short Integer SmallInt

U16

Addr4882_t

16-bit unsigned
integer

0 to 65535 unsigned
short

Not supported
by BASIC, use
the signed
integer (I16)
instead

Word

I32

ssize_t

32-bit signed
integer

-2147483648 to

2147483647

long Long LongInt

U32

size_t

32-bit unsigned
integer

0 to 4294967295 unsigned
long

Not supported
by BASIC, use
the signed long
integer (I32)
instead

Cardinal

F32 32-bit single-
precision

floating-point

-3.402823E38 to

3.402823E38

float Single Single

F64 64-bit double-
precision

floating-point

-
1.797683134862315E308

to

1.797683134862315E309

double Double Double

Function Description • 11

2.2 IEEE 488 Function Reference

2.2.1 ibask

@ Description

Return the current setting value of the selected configuration item.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
int ibask (int ud, int option, int *value)

Visual Basic
ilask (ByVal ud As Integer, ByVal opt As Integer, rval As Integer) As Integer
or

call ibask (ByVal ud As Integer, ByVal opt As Integer, rval As Integer)

@ Parameter

ud : board or device unit descriptor
option : the configuration item whose value is being returned. The valid option items are

listed in the table 2.1 and 2.2.
value: returns current value of the specified configuration item.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, ECAP, EDVR

Table 1-3. ibask Board Configuration Parameter Options

Options(Constants) Options(Values) Returned Information
ibaPAD 0x0001 The current primary address of the board
ibaSAD 0x0002 The current secondary address of the

board.
ibaTMO 0x0003 The current I/O timeout of the board.
ibaEOT 0x0004 0: The GPIB EOI line is not asserted at

the end of a write operation.
1: EOI is asserted at the end of a write.

ibaPPC 0x0005 The current parallel poll configuration
settings the board

ibaAUTOPOLL 0x0007 0: Automatic serial polling is disabled.
1: Automatic serial polling is enabled.

ibaCICPROT 0x0008 0: The CIC protocol is disabled.
1: The CIC protocol is enabled.

ibaIRQ 0x0009 0: Interrupts are not enabled.
1: Interrupts are enabled.

ibaSC 0x000A 0: The board is not the GPIB
SystemController.

1: The board is the System Controller..
ibaSRE 0x000B 0: The board does not automatically

12 • Function Description

assert the GPIB REN line when it
becomes the System Controller.

1: The board automatically asserts REN
when it becomes the System
Controller.

ibaEOSrd 0x000C 0: The EOS character is ignored during
read operations.

1: Read operation is terminated by the
EOS character.

ibaEOSwrt 0x000D 0: The EOI line is not asserted when the
EOS character is sent during a write
operation.

1: The EOI line is asserted when the
EOS character is sent during a write
operation.

ibaEOScmp 0x000E 0: A 7-bit compare is used for all EOS
comparisons.

1: An 8-bit compare is used for all EOS
comparisons.

ibaEOSchar 0x000F The current EOS character of the board.
ibaPP2 0x0010 0: The board is in PP1 mode–remote

parallel poll configuration.
1: The board is in PP2 mode–local

parallel poll configuration.
ibaTIMING 0x0011 The current bus timing of the board.

1: Normal timing (T1 delay of 2 µs.)
2: High speed timing (T1 delay of 500

ns.)
3: Very high speed timing (T1 delay of

350 ns.)
ibaDMA 0x0012 0: The board will not use DMA for GPIB

transfers.
1: The board will use DMA for GPIB

transfers
ibaSpollBit 0x0016 0: The SPOLL bit of ibsta is disabled.

1: The SPOLL bit of ibsta is enabled.
ibaSendLLO 0x0017 0: The GPIB LLO command is not sent

when a device is put online-ibfind or
ibdev.

1: The LLO command is sent.
ibaPPollTime 0x0019 0: The board uses the standard duration

(2 µs) when conducting a parallel
poll.

1 to 17 = The board uses a variable
length duration when conducting a
parallel poll. The duration values
correspond to the ibtmo timing
values.

ibaEndBitIsNormal al0x001A 0: The END bit of ibsta is set only when
EOI or EOI plus the EOS character is
received. If the EOS character is
received without EOI, the END bit is
not set.

1: The END bit is set whenever EOI,
EOS, or EOI plus EOS is received.

ibaist 0x0020 The individual status (ist) bit of the
board.

ibaRsv 0x0021 The current serial poll status byte of the
board.

Function Description • 13

Table 1-4. ibask Device Configuration Parameter Options

Options(Constants) Options(Value

s)
Returned Information

ibaPAD 0x0001 The current primary address of the device.
ibaSAD 0x0002 The current secondary address of the

device.
ibaTMO 0x0003 The current I/O timeout of the device.
ibaEOT 0x0004 0: The GPIB EOI line is not asserted at the

end of a write operation.
1: EOI is asserted at the end of a write.

ibaREADDR 0x0006 0: No unnecessary addressing is
performed between device-level read and
write operations.
1: Addressing is always performed before
a device-level read or write operation.

ibaEOSrd 0x000C 0: The EOS character is ignored during
read operations.

1: Read operation is terminated by the
EOS character.

ibaEOSwrt 0x000D 0: The EOI line is not asserted when the
EOS character is sent during a write
operation.

1: The EOI line is asserted when the EOS
character is sent during a write
operation.

ibaEOScmp 0x000E 0: A 7-bit compare is used for all EOS
comparisons.

1: An 8-bit compare is used for all EOS
comparisons.

ibaEOSchar 0x000F The current EOS character of the board.
ibaSPollTime 0x0018 The length of time the driver waits for a

serial poll response when polling the
device. The length of time is represented
by the ibtmo timing values.

ibaEndBitIsNormal al0x001A 0: The END bit of ibsta is set only when
EOI or EOI plus the EOS character is
received. If the EOS character is
received without EOI, the END bit is not
set.

1: The END bit is set whenever EOI, EOS,
or EOI plus EOS is received.

ibaBNA 0x0200 The index of the GPIB access board used
by the given device descriptor.

14 • Function Description

2.2.2 ibbna

@ Description

Assign the access board of the specified device.

@ Support Level

Device level

@ Syntax

Microsoft C/C++ and Borland C++
int ibbna(int ud, char *board_name)

Visual Basic
ilbna (ByVal ud As Integer, ByVal udname As String) As Integer
or
call ibbna(ByVal ud As Integer, ByVal udname As String)

@ Parameter

ud : device unit descriptor
board_name : the name of the access board, e.g. gpib0.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, ECAP, EDVR, EOIP, ENEB

2.2.3 ibcac

@ Description

Set the specified gpib board to be the active controller. After “take control” (tcs or tca) command is
sent, ATN line is asserted. Before making a board to be the controller, it has to already be CIC. If it
is not CIC, using ibsic function.
The board can take control synchronously or asynchronously. For taking control synchronously, in
order not to corrupt transferred data, the GPIB board attempts to assert the ATN signal while the
board performs RFD holdoff. If this attempt (taking control synchronously) is failed, the board takes
control asynchronously. For taking control asynchronously, the GPIB board asserts ATN
immediately without regard for any data transfer currently on GPIB bus.

@ Support Level

board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibcac(int ud, int synchronous)

Visual Basic
ilcac(ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibcac(ByVal ud As Integer, ByVal v As Integer)

@ Parameter

Function Description • 15

ud : board unit descriptor
v : takes control asynchronously or synchronously

0: asynchronously
1: synchronously

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, ECIC, EDVR, EOIP, ENEB

2.2.4 ibclr

@ Description

Clear the selected device by sending “SDC” message.

@ Support Level

Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibclr(int ud)

Visual Basic
ilclr(ByVal ud As Integer) As Integer
or
call ibclr(ByVal ud As Integer)

@ Parameter

ud : device unit descriptor

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.2.5 ibcmd

@ Description

Send GPIB commands. This function is used to send GPIB interface messages but not to send
device-specific instructions to GPIB devices. To send device-specific instructions, using ibwrt/ibwrta.
The global variable ibcntl returns the number of command bytes transferred.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibcmd(int ud, const void *cmd, long cnt)

Visual Basic

16 • Function Description

ilcmd(ByVal ud As Integer, ByVal buf As String, ByVal cnt As Long) As Integer
or
call ibcmd(ByVal ud As Integer, ByVal buf As String)

@ Parameter

ud : device unit descriptor
buf : the buffer contains command string to sent
cnt : number of command bytes to sent

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, ECIC, EDVR, EOIP, ENEB, EABO, ENOL

2.2.6 ibcmda

@ Description

Send GPIB commands asynchronously. This function is used to send GPIB interface messages but
not to send device-specific instructions to GPIB devices. To send device-specific instructions, using
ibwrt/ibwrta. The global variable ibcntl returns the number of command bytes transferred.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibcmda (int ud, const void *cmd, long cnt)

Visual Basic
Ilcmda (ByVal ud As Integer, ByVal buf As String, ByVal cnt As Long) As Integer
or
call ibcmda (ByVal ud As Integer, ByVal buf As String)

@ Parameter

ud : device unit descriptor
buf : the buffer contains command string to sent
cnt : number of command bytes to sent

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, ECIC, EDVR, EOIP, ENEB, EABO, ENOL

2.2.7 ibconfig

@ Description

Set the value of the selected configuration item.

@ Support Level

Board / Device level

@ Syntax

Function Description • 17

Microsoft C/C++ and Borland C++
Int ibconfig(int ud, int option, int value)

Visual Basic
ilconfig(ByVal ud As Integer, ByVal opt As Integer, ByVal v As Integer) As Integer
or
call ibconfig(ByVal ud As Integer, ByVal opt As Integer, ByVal v As Integer)

@ Parameter

ud : board or device unit descriptor
opt : the configuration item wishing to be changed. The valid option items are listed in the

following tables.

Board Configuration Parameter Options

Options(Constants) Options(Values) Legal Values
ibcPAD 0x0001 Set the primary address of the board.
ibcSAD 0x0002 Set the secondary address of the

board.
ibcTMO 0x0003 Set the I/O timeout limit of the board.
ibcEOT 0x0004 Set the data termination mode for

write operations.
ibcPPC 0x0005 Configures the board for parallel polls.

Default: zero
ibcAUTOPOLL 0x0007 0: Disable automatic serial polling.

1: Enable automatic serial polling.
ibcSC 0x000A Request or release system control.

Identical to ibrsc.
ibcSRE 0x000B Assert the Remote Enable (REN) line.

Identical to ibsre.
Default: zero.

ibcEOSrd 0x000C 0: Ignore EOS character during read
operations.

1: Terminate reads when the EOS
character is read match occurs.

ibcEOSwrt 0x000D 0: Do not assert EOI with the EOS
character during write operations.

1: Assert EOI with the EOS character
during writes operations.

ibcEOScmp 0x000E 0: Use 7 bits for the EOS character
comparison.

1: Use 8 bits for the EOS character
comparison.

ibcEOSchar 0x000F Any 8-bit value. This byte becomes
the new EOS character.

ibcPP2 0x0010 0: PP1 mode-remote parallel poll
configuration.

1: PP2 mode-local parallel poll
configuration.

Default: zero.
ibcTIMING 0x0011 1: Normal timing (T1 delay of 2 µs.)

2: High speed timing (T1 delay of 500
ns.)

3: Very high speed timing (T1 delay of
350 ns.).

The T1 delay is the GPIB source
handshake timing.
Default : 3

18 • Function Description

ibcReadAdjust 0x0013 0 = No byte swapping.
1 = Swap pairs of bytes during a read.

Default: zero.
ibcWriteAdjust 0x0014 0 = No byte swapping.

1 = Swap pairs of bytes during a write.
Default: zero.

ibcSpollBit 0x0016 0: The SPOLL bit of ibsta is disabled.
1: The SPOLL bit of ibsta is enabled.
Default: zero.

ibcSendLLO 0x0017 0: Do not send LLO when putting a
device online –ibfind or ibdev.

1: Send LLO when putting a device
online–ibfind or ibdev.

Default: zero.
ibcPPollTime 0x0019 0: Use the standard duration (2 µs)

when conducting a parallel poll.
1 to 17: Use a variable length duration
when conducting a parallel poll. The
duration represented by 1 to 17
corresponds to the ibtmo values.
Default: zero.

ibcEndBitIsNormal 0x001A 0: Do not set the END bit of ibsta
when an EOS match occurs during
a read.

1: Set the END bit of ibsta when an
EOS match occurs during a read.

Default: 1.
ibcIst 0x0020 Sets the individual status (ist) bit of

the board.
ibcRsv 0x0021 Sets the serial poll status byte of the

board.
Default: zero.

Device Configuration Parameter Options

Options(Constants) Options(Values) Legal Values
ibcPAD 0x0001 Set the primary address of the board.
ibcSAD 0x0002 Set the secondary address of the

board.
ibcTMO 0x0003 Set the I/O timeout limit of the board.
ibcEOT 0x0004 Set the data termination mode for

write operations.
IbcREADDR 0x0006 0: No unnecessary readdressing is

performed between device-level
reads and writes.

1: Addressing is always performed
before a device-level read or write.

ibcEOSrd 0x000C 0: Ignore EOS character during read
operations.

1: Terminate reads when the EOS
character is read match occurs.

ibcEOSwrt 0x000D 0: Do not assert EOI with the EOS
character during write operations.

1: Assert EOI with the EOS character
during writes operations.

ibcEOScmp 0x000E 0: Use 7 bits for the EOS character
comparison.

Function Description • 19

1: Use 8 bits for the EOS character
comparison.

ibcEOSchar 0x000F Any 8-bit value. This byte becomes the
new EOS character.

ibcSPollTime 0x0018 0 to 17 : Sets the length of time the
driver waits for a serial poll response
byte when polling the given device. The
length of time represented by 0 to 17
corresponds to the ibtmo values.
Default: 11.

ibcEndBitIsNormal 0x001A 0: Do not set the END bit of ibsta when
an EOS match occurs during a read.

1: Set the END bit of ibsta when an
EOS match occurs during a read.
Default: 1.

value: the value wish to be changed to the specified configuration item.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, ECAP, EDVR, EOIP

2.2.8 ibdev

@ Description

Open and initialize a device descriptor. If ibdev is unable to get a valid device descriptor, a -1 is
returned; the ERR bit is set in ibsta and iberr contains EDVR.

@ Support Level

Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibdev(int board_index, int pad, int sad, int timo, int send_eoi, int eosmode)

Visual Basic
ildev(ByVal bdid As Integer, ByVal pad As Integer, ByVal sad As Integer, ByVal tmo As Integer,

ByVal eot As Integer, ByVal eos As Integer) As Integer
or
call ibdev(ByVal bdid As Integer, ByVal pad As Integer, ByVal sad As Integer, ByVal tmo As

Integer, ByVal eot As Integer, ByVal eos As Integer, ud As Integer)

@ Parameter

board_index : the index of the access board for the device
pad : the primary GPIB address of the device
sad : the second GPIB address of the device
tmo : the I/O timeout value
eot : enable or disable EOI mode of the devcie
eos : configure EOS character and EOS modes of the devcie

@ Return Code

The device descriptor or -1.

@ Possiable Error Codes

20 • Function Description

EARG, EDVR, ENEB,

2.2.9 ibdma

@ Description

This fucntion is not supported in adlgpib.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibdma(int ud, int v)

Visual Basic
ildma(ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibdma(ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the board descriptor
dma : enable or disable dma mode

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, ECAP, EDVR, ENEB, EOIP

2.2.10 ibeot

@ Description

Enable or disable the assertion of the GPIB EOI line (by a talker) to indicate the end of a multiple
byte transfer sequence.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibeot (int ud, int v)

Visual Basic
Ileot (ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibeot (ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the board or device descriptor
v : enable or disable eot mode

@ Return Code

The value of ibsta.

@ Possiable Error Codes

Function Description • 21

EDVR, ENEB, EOIP

2.2.11 ibeos

@ Description

Configure the end-of-string (EOS) termination mode or character.

Note: Defining an EOS byte does not cause the driver to automatically send that byte at the end of write I/O
operations. Your application is responsible for placing the EOS byte at the end of the data strings that
it defines.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibeot (int ud, int v)

Visual Basic
ileos (ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibeos (ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the board or device descriptor
v : EOS mode and character information. If v is zero, the EOS configuration is disabled.

Otherwise, the low byte is the EOS character and the upper byte contains flags
defining the EOS mode. The different EOS configurations and the corresponding
values of v as the following table:

EOS mode

value of v

 Bit High Byte Low Byte

Terminate read when EOS is

detected.

A 00000100 EOS character

Set EOI with EOS on write function. B 00001000 EOS character

Compare all 8 bits of EOS byte rather

than low 7 bits (all read and write

functions).

C 00010000 EOS character

Configuration bits A and C determine how to terminate read I/O operations. If bit A
is set and bit C is clear, a read ends when a byte that matches the low seven bits of
the EOS character is received. If bits A and C are both set, a read ends when a
byte that matches all eight bits of the EOS character is received.

Configuration bits B and C determine when a write I/O operation asserts the GPIB
EOI line. If bit B is set and bit C is clear, EOI is asserted when the written character
matches the low seven bits of the EOS character. If bits B and C are both set, EOI
is asserted when the written character matches all eight bits of the EOS character.

22 • Function Description

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP

2.2.12 ibfind

@ Description

Open and initialize a GPIB board descriptor. The returned board descriptor can be used in
subsequent calls. ibfind performs the equivalent of an ibonl 1 to initialize the board descriptor. The
descriptor returned by ibfind is valid until the board is put offline using ibonl 0. If ibfind is unable to
get a valid descriptor, a -1 is returned; the ERR bit is set in ibsta and iberr contains EDVR.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibfind (const char *boardname)

Visual Basic
ilfind(ByVal boardname As String) As Integer
or
call ibfind (ByVal boardname As String, ud As Integer)

@ Parameter

boardname : the board name, e.g. gpib0.

@ Return Code

The board descriptor or -1.

@ Possiable Error Codes

EBUS, ECIC, EDVR, ENEB

2.2.13 ibgts

@ Description

Set the board from active controller state to Standby Controller state. ibgts causes the GPIB
interface to go to Standby Controller and the GPIB ATN line to be unasserted.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibgts (int ud, int shadow_handshake)

Visual Basic
ilgts (ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibgts (ByVal ud As Integer, ByVal v As Integer)

@ Parameter

Function Description • 23

ud : the board descriptor
v : determines whether to perform acceptor handshaking

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EADR , EARG, ECIC, EDVR, ENEB, EOIP

2.2.14 ibist

@ Description

Set or clear the board individual status (ist) bit for parallel polls.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibist (int ud, int ist)

Visual Basic
ilist (ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibist (ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the board descriptor
v : indicates whether to set or clear the ist bit

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP

2.2.15 iblines

@ Description

Return the status of the GPIB control lines. The low-order byte (bits 0 through 7) of lines indicating
the capability of the GPIB interface to sense the status of each GPIB control line. The upper byte
(bits 8 through 15) indicates the GPIB control line state information. The following is the description
of each byte.

7 6 5 4 3 2 1 0

EOI ATN SRQ REN IFC NRFD NDAC DAV
To determine if a GPIB control line is asserted, first check the appropriate bit in the lower byte to
determine if the line can be monitored. If the line can be monitored (indicated by a 1 in the
appropriate bit position), check the corresponding bit in the upper byte. If the bit is set (1), the
corresponding control line is asserted. If the bit is clear (0), the control line is unasserted.

@ Support Level

Board level

24 • Function Description

@ Syntax

Microsoft C/C++ and Borland C++
Int iblines(int ud, short *line_status)

Visual Basic
illines(ByVal ud As Integer, lines As Integer) As Integer
or
call iblines(ByVal ud As Integer, lines As Integer)

@ Parameter

ud : the board descriptor
line_status : return GPIB control line state information

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP

2.2.16 ibln

@ Description

Checks whether a device is present on the bus.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibln(int ud, int pad, int sad, short *found_listener)

Visual Basic
illn (ByVal ud As Integer, ByVal pad As Integer, ByVal sad As Integer, found_listener As Integer)

As Integer
or
call ibln (ByVal ud As Integer, ByVal pad As Integer, ByVal sad As Integer, found_listener As

Integer)

@ Parameter

ud : the board or device descriptor. If ud is a board descriptor, the bus associated with
that board is tested for Listeners. If ud is a device descriptor, ibln uses the access
board associated with that device to test for Listeners. If a Listener is detected, a
non-zero value is returned in found_listener. If no Listener is found, zero is returned

pad : the primary address of the device (a value between 0 and 30).
sad : the secondary address of the device (a value between 96 to 126 or NO_SAD or

ALL_SAD, where NO_SAD is no secondary address is to be tested, i.e. only a
primary address is tested and ALL_SAD designates that all secondary addresses
are to be tested),

found_listener : indicates if a device is present

@ Return Code

The value of ibsta.

@ Possiable Error Codes

Function Description • 25

EARG, ECIC, EDVR, ENEB, EOIP

2.2.17 ibloc

@ Description

For a board, ibloc place the board in local mode, if it is not in a lockout state. The board is in a
lockout state if LOK does not appear in the status word ibsta. If the board is in a lockout state, the
call has no effect.

The ibloc function is used to simulate a front panel RTL (Return to Local) switch if the computer is
used as an instrument.

For a device, unless the REN (Remote Enable) line has been unasserted with the ibsre function, all
device-level calls automatically place the specified device in remote program mode. ibloc is used to
move devices temporarily from a remote program mode to a local mode until the next device
function is executed on that device.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibloc (int ud)

Visual Basic
illoc(ByVal ud As Integer) As Integer
or
call ibloc (ByVal ud As Integer)

@ Parameter

ud : the board or device descriptor.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EBUS, ECIC, EDVR, ENEB, EOIP

2.2.18 ibonl

@ Description

Resets the board or device, sets all its software configuration parameters in their pre-configured
state and place the device online or offline. If a device or an interface is taken offline, the board or
device descriptor is no longer valid. You have to call ibdev or ibfind to access the board or device
again.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibonl (int ud, int onl)

Visual Basic

26 • Function Description

ilonl (ByVal ud As Integer, ByVal onl As Integer) As Integer
or
call ibonl (ByVal ud As Integer, ByVal onl As Integer)

@ Parameter

ud : the board or device descriptor.
onl : online (1) or offfline (0).

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, ENEB

2.2.19 ibnotify

@ Description

Notify user of one or more GPIB events by invoking the user specified callback.
After an asynchronous I/O operation has completed, resynchronization of the handler is required and
the global variables passed into the Callback after I/O has completed contain the status of the I/O
operation.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibnotify (int ud, int mask, GpibNotifyCallback_t Callback, void *RefData)

@ Parameter

ud : the board or device descriptor.
mask : bit mask of GPIB events. The valid event mask are the following:

0: no mask
TIMO : the timeout period (see ibtmo) to limit the notify period
END : END or EOS is detected
SRQI : SRQ is asserted (board-level only)
RQS : Device requested service (device-level only)
CMP : I/O is complete
LOK : GPIB interface is in Lockout State (board-level only)
REM : GPIB interface is in Remote State (board-level only)
CIC : GPIB interface is CIC (board-level only)
ATN : Attention is asserted (board-level only)
TACS : GPIB interface is Talker (board-level only)
LACS : GPIB interface is Listener (board-level only)
DTAS : GPIB interface is in Device Trigger State (board-level only)
DCAS: GPIB interface is in Device Clear State (board-level only).
If mask is non-zero, ibnotify monitors the events specified by mask, and when one
or more of the events is true, the Callback is invoked. For a board-level ibnotify call,
all mask bits are valid except for ERR and RQS. For a device-level ibnotify call, the
only valid mask bits are CMPL, TIMO, END, and RQS. If TIMO is set in the notify
mask, ibnotify calls the callback function when the timeout period has elapsed, if
one or more of the other specified events have not already occurred. If TIMO is not

Function Description • 27

set in the notify mask, the callback is not called until one or more of the specified
events occur.

Callback : the address callback function.
Callback Prototype for ibnotify

int __std call Callback (int LocalUd, int LocalIbsta, int LocalIberr, long LocalIbcntl,
void *RefData)

Callback Parameters
LocalUd : Board or device descriptor
LocalIbsta : Value of ibsta
LocalIberr : Value of iberr
LocalIbcntl : Value of ibcntl
RefData : User-defined reference data for the callback

Callback Return Value
Bit mask of the GPIB events to notice next.

Possible Error Code
EDVR

RefData : user-defined reference data for the callback.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, ECAP, EDVR, ENEB, EOIP

2.2.20 ibpad

@ Description

Set primary GPIB address of a board or a device.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibpad (int ud, int v)

Visual Basic
ilpad(ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibpad(ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the board or device descriptor.
v : the GPIB primary address. The valid range of value is 0 through 30.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP

2.2.21 ibsad

28 • Function Description

@ Description

Set or disable secondary GPIB address of a board or a device.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibsad(int ud, int v)

Visual Basic
ilsad(ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibsad (ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the board or device descriptor.
v : set or disable the GPIB secondary address. If If v is zero, secondary addressing is

disabled. If v is non-zero, the secondary address is enabled and valid range of
value is 96 to 126 (0x60 to 0x7E).

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP

2.2.22 ibpct

@ Description

Pass Controller-in-Charge (CIC) status to another GPIB device with Controller capability. The
access board automatically unasserts the ATN line and goes to Controller Idle State (CIDS).

@ Support Level

Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibpct (int ud)

Visual Basic
ilpct (ByVal ud As Integer) As Integer
or
call ibpct (ByVal ud As Integer)

@ Parameter

ud : the device descriptor.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, ENEB, EOIP

Function Description • 29

2.2.23 ibppc

@ Description

Configure Parallel Polling.
If ud is a device descriptor, ibppc enables or disables the device from responding to parallel polls.
The device is addressed and sent the appropriate parallel poll message parallel Poll Enable (PPE)
or Disable (PPD). Valid parallel poll messages are 96 to 126 (hex 60 to hex 7E) or zero to send
PPD.
If ud is a board descriptor, ibppc performs a local parallel poll configuration using the parallel poll
configuration value v. Valid parallel poll messages are 96 to 126 (hex 60 to hex 7E) or zero to send
PPD. If no error occurs during the call, iberr contains the previous value of the local parallel poll
configuration.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibppc (int ud, int v)

Visual Basic
ilppc (ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibppc (ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the device descriptor.
v : parallel poll enable/disable value.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EBUS, ECAP, ECIC, EDVR, ENEB, EOIP

2.2.24 ibrd

@ Description

Reads data from a device into the user specified buffer.
If ud is a device descriptor, ibrd addresses the GPIB, reads up to count bytes of data, and places
the data into the user buffer. The operation terminates normally when count bytes have been
received or END is received. The operation terminates with an error if the transfer could not
complete within the timeout period. The actual number of bytes transferred is returned in the global
variable ibcntl.
If ud is a board descriptor, ibrd reads up to count bytes of data and places the data into the buffer. A
board-level ibrd assumes that the GPIB is already properly addressed. The operation terminates
normally when count bytes have been received or END is received. The operation terminates with
an error if the transfer could not complete within the timeout period or, if the board is not CIC, the
CIC sends a Device Clear on the GPIB. The actual number of bytes transferred is returned in the
global variable ibcntl.

@ Support Level

30 • Function Description

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibrd (int ud, void *buf, long cnt)

Visual Basic
ilrd (ByVal ud As Integer, buf As String, ByVal cnt As Long) As Integer
or
call ibrd (ByVal ud As Integer, buf As String)

@ Parameter

ud : the device descriptor.
buf : the buffer to store the data read from the GPIB.
cnt : number of bytes to be read from the GPIB.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EABO, EADR, EBUS, ECIC, EDVR, ENEB, EOIP

2.2.25 ibrda

@ Description

Reads data asynchronously from a device into the user specified buffer .
If ud is a device descriptor, ibrda addresses the GPIB, reads up to count bytes of data, and places
the data into the buffer. The operation terminates normally when count bytes have been received or
END is received. The operation terminates with an error if the transfer could not complete within the
timeout period. The actual number of bytes transferred is returned in the global variable ibcntl.
If ud is a board descriptor, ibrda reads up to count bytes of data and places the data into the buffer.
A board-level ibrda assumes that the GPIB is already properly addressed. The operation terminates
normally when count bytes have been received or END is received. The operation terminates with
an error if the transfer could not complete within the timeout period or, if the board is not CIC, the
CIC sends a Device Clear on the GPIB. The actual number of bytes transferred is returned in the
global variable ibcntl.

The asynchronous I/O calls (ibcmda, ibrda, ibwrta) are designed so that applications can perform
other non-GPIB operations while the I/O is in progress. Once the asynchronous I/O has begun,
further GPIB calls are strictly limited. Any calls that would interfere with the I/O in progress are not
allowed, the driver returns EOIP in this case.
Once the I/O is complete, the application must resynchronize with the adlgpib driver.
Resynchronization is accomplished by using one of the following three functions:

ibwait If the returned ibsta mask has the CMPL bit set, the driver and application are
resynchronized.

ibnotify If the ibsta value passed to the ibnotify callback contains CMPL, the driver and application
are resynchronized.

ibstop The I/O is canceled; the driver and application are resynchronized.
ibonl The I/O is canceled and the interface is reset; the driver and application are

resynchronized.

@ Support Level

Function Description • 31

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibrda (int ud, void *buf, long cnt)

Visual Basic
ilrda (ByVal ud As Integer, buf As String, ByVal cnt As Long) As Integer
or
call ibrda (ByVal ud As Integer, buf As String)

@ Parameter

ud : the device descriptor.
buf : the buffer to store the data read from the GPIB.
cnt : number of bytes to be read from the GPIB.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EABO, EADR, EBUS, ECIC, EDVR, ENEB, EOIP

2.2.26 ibrdf

@ Description

Reads data from a device into a file.
If ud is a device descriptor, ibrdf addresses the GPIB, reads data from a GPIB device, and places
the data into the file. The operation terminates normally when END is received. The operation
terminates with an error if the transfer could not complete within the timeout period. The actual
number of bytes transferred is returned in the global variable ibcntl.
If ud is a board descriptor, ibrdf reads data from a GPIB device and places the data into the file. A
board-level ibrdf assumes that the GPIB is already properly addressed. The operation terminates
normally when END is received. The operation terminates with an error if the transfer could not
complete within the timeout period or, if the board is not CIC, the CIC sends a Device Clear on the
GPIB. The actual number of bytes transferred is returned in the global variable ibcntl.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibrdf (int ud, const char *filename)

Visual Basic
ilrdf (ByVal ud As Integer, ByVal filename As String) As Integer
or
call ibrdf (ByVal ud As Integer, ByVal filename As String)

@ Parameter

ud : the device descriptor.
filename : the name of the file where the read data are stored.

@ Return Code

The value of ibsta.

32 • Function Description

@ Possiable Error Codes

EABO, EADR, EBUS, ECIC, EDVR, EFSO, ENEB, EOIP

2.2.27 ibrpp

@ Description

Perform a parallel poll.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibrpp (int ud, char *ppr)

Visual Basic
ilrpp (ByVal ud As Integer, ppr As Integer) As Integer
or
call ibrpp (ByVal ud As Integer, ppr As Integer)

@ Parameter

ud : the device descriptor.
ppr : the result of parallel poll.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EBUS, ECIC, EDVR, ENEB, EOIP

2.2.28 ibrsc

@ Description

Request or release the System Controller capability by sending Interface Clear (IFC) and Remote
Enable (REN) messages to devices. If the board releases system control, perforn opertions
requiring System Controller capability are not allowed. If the board requests system control, calls
operation requiring System Controller capability are subsequently allowed.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibrsc (int ud, int v)

Visual Basic
ilrsc (ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibrsc(ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the device descriptor.
v : 0: release system control

Function Description • 33

1: request system control.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP

2.2.29 ibrsp

@ Description

Perform a serial poll. If bit 6 (hex 40) of the response is set, the device is requesting service. When
the automatic serial polling feature is enabled, the device might have already been polled. In this
case, ibrsp returns the previously acquired status byte.

@ Support Level

Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibrsp (int ud, char *spr)

Visual Basic
ilrsp (ByVal ud As Integer, spr As Integer) As Integer
or
call ibrsp(ByVal ud As Integer, spr As Integer)

@ Parameter

ud : the device descriptor.
spr : the result of serial poll.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EABO, EARG, EBUS, ECIC, EDVR, ENEB, EOIP, ESTB

2.2.30 ibrsv

@ Description

Request service and change the serial poll status byte.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
ibrsv (int ud, int v)

Visual Basic
ilrsv (ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibrsv (ByVal ud As Integer, ByVal v As Integer)

34 • Function Description

@ Parameter

ud : the device descriptor.
v : Serial poll status byte.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP

2.2.31 ibsic

@ Description

Asserts the GPIB interfaces clear (IFC) line for at least 100 ns if the GPIB interface is System
Controller. This initializes the GPIB and makes the interface CIC and Active Controller with ATN
asserted.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibsic (int ud)

Visual Basic
ilsic (ByVal ud As Integer) As Integer
or
call ibsic (ByVal ud As Integer)

@ Parameter

ud : the device descriptor.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP, ESAC

2.2.32 ibsre

@ Description

Set or clear the Remote Enable (REN) line. If remote enable line is set, the GPIB Remote Enable
(REN) line is asserted. If remote enable line is cleared, REN is unasserted. REN is used by devices
to choose between local and remote modes of operation. A device should not actually enter remote
mode until it receives its listen address and REN is asserted.

@ Support Level

Board level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibsre(int ud, int v)

Function Description • 35

Visual Basic
ilsre (ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibsre(ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the board descriptor.
v : 0: clear REN line.

1: set REN line

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP, ESAC

2.2.33 ibstop

@ Description

Abort asynchronous mode of I/O operation. If asynchronous I/O is in progress, the error bit is set in
the status word, ibsta, and EABO is returned, indicating that the I/O was successfully stopped.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibstop(int ud)

Visual Basic
ilstop (ByVal ud As Integer) As Integer
or
call ibstop(ByVal ud As Integer)

@ Parameter

ud : the board or device descriptor.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EABO, EBUS, EDVR, ENEB

2.2.34 ibtmo

@ Description

Set the timeout period of the board or device. The timeout period is the maximum duration allowed
for a synchronous I/O operation (for example, ibrd and ibwrt) or for an ibwait or ibnotify operation
with TIMO in the wait mask. If the operation does not complete before the timeout period elapses,
the operation is aborted and TIMO is returned in ibsta.

@ Support Level

Board / Device level

36 • Function Description

@ Syntax

Microsoft C/C++ and Borland C++
Int ibtmo(int ud, int v)

Visual Basic
iltmo (ByVal ud As Integer, ByVal v As Integer) As Integer
or
call ibtmo (ByVal ud As Integer, ByVal v As Integer)

@ Parameter

ud : the board or device descriptor.
v : timeout code. The valid timeout codes are the following:

Constant Value of v MinimumTimeout
TNONE 0 Disabled - no timeout
T10us 1 10 µs
T30us 2 30 µs
T100us 3 100 µs
T300us 4 300 µs
T1ms 5 1 ms
T3ms 6 3 ms
T10ms 7 10 ms
T30ms 8 30 ms
T100ms 9 100 ms
T300ms 10 300 ms
T1s 11 1 s
T3s 12 3 s
T10s 13 10 s
T30s 14 30 s
T100s 15 100 s
T300s 16 300 s
T1000s 17 1000 s

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP

2.2.35 ibtrg

@ Description

Send the Group Execute Trigger (GET) message to the device.

@ Support Level

Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibtrg (int ud)

Visual Basic
iltrg (ByVal ud As Integer) As Integer
or
call ibtrg(ByVal ud As Integer)

Function Description • 37

@ Parameter

ud : the device descriptor.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, ENEB, EOIP

2.2.36 ibwait

@ Description

Monitor the events specified by mask and delays processing until one or more of the events occurs.
If the wait mask is zero, ibwait returns immediately with the updated ibsta. If TIMO is set in the wait
mask, ibwait returns when the timeout period has elapsed, if one or more of the other specified
events have not already occurred. If TIMO is not set in the wait mask, the function waits indefinitely
for one or more of the specified events to occur. The existing ibwait mask bits are identical to the
ibsta bits. If ud is a device descriptor, the only valid wait mask bits are TIMO, END, RQS, and CMPL.
If ud is a board descriptor, all wait mask bits are valid except for RQS. You can configure the
timeout period using the ibtmo function.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibwait (int ud, int mask)

Visual Basic
ilwait (ByVal ud As Integer, ByVal mask As Integer) As Integer
or
call ibwait (ByVal ud As Integer, ByVal mask As Integer)

@ Parameter

ud : the board or device descriptor.
mask : GPIB events to wait for. The valid mask codes are listed in the following table:

Mask Bit Pos. Hex
Value

Description

ERR 15 8000 GPIB error
TIMO 14 4000 Time limit exceeded
END 13 2000 GPIB board detected END or EOS
SRQI 12 1000 SRQ asserted (board only)
RQS 11 800 Device requesting service (device only)
SPOLL 10 400 The board has been serial polled by

theController
EVENT 9 200 A DTAS, DCAS, or IFC event has

occurred
CMPL 8 100 I/O completed
LOK 7 80 GPIB board is in Lockout State
REM 6 40 GPIB board is in Remote State
CIC 5 20 GPIB board is CIC
ATN 4 10 Attention is asserted
TACS 3 8 GPIB board is Talker

38 • Function Description

LACS 2 4 GPIB board is Listener
DTAS 1 2 GPIB board is in Device Trigger State
DCAS 0 1 GPIB board is in Device Clear State

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, ENEB, ESRQ

2.2.37 ibwrt

@ Description

Write data to a device from a data buffer.
If ud is a device descriptor, ibwrt addresses the GPIB and writes count bytes from the memory to a
GPIB device. The operation terminates normally when count bytes have been sent. The operation
terminates with an error if count bytes could not be sent within the timeout period. The actual
number of bytes transferred is returned in the global variable ibcntl.
If ud is a board descriptor, ibwrt writes count bytes of data from the buffer to a GPIB device; a
board-level ibwrt assumes that the GPIB is already properly addressed. The operation terminates
normally when count bytes have been sent. The operation terminates with an error if count bytes
could not be sent within the timeout period or, if the board is not CIC, the CIC sends Device Clear
on the GPIB. The actual number of bytes transferred is returned in the global variable ibcntl.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibwrt (int ud, const void *buf, long count)

Visual Basic
ilwrt (ByVal ud As Integer, ByVal buf As String, ByVal cnt As Long) As Integer
or
call ibwrt (ByVal ud As Integer, ByVal buf As String)

@ Parameter

ud : device unit descriptor
buf : the buffer contains data bytes to sent
cnt : number of data bytes to sent

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EADR, EABO, EBUS, ECIC, EDVR, EOIP, ENEB, ENOL

2.2.38 ibwrta

@ Description

Write data asynchronously to a device from a data buffer.

Function Description • 39

If ud is a device descriptor, ibwrt addresses the GPIB and writes count bytes from the memory to a
GPIB device. The operation terminates normally when count bytes have been sent. The operation
terminates with an error if count bytes could not be sent within the timeout period. The actual
number of bytes transferred is returned in the global variable ibcntl.
If ud is a board descriptor, ibwrt writes count bytes of data from the buffer to a GPIB device; a
board-level ibwrt assumes that the GPIB is already properly addressed. The operation terminates
normally when count bytes have been sent. The operation terminates with an error if count bytes
could not be sent within the timeout period or, if the board is not CIC, the CIC sends Device Clear
on the GPIB. The actual number of bytes transferred is returned in the global variable ibcntl.
The asynchronous I/O calls (ibcmda, ibrda, ibwrta) are designed so that applications can perform
other non-GPIB operations while the I/O is in progress. Once the asynchronous I/O has begun,
further GPIB calls are strictly limited. Any calls that would interfere with the I/O in progress are not
allowed, the driver returns EOIP in this case.

Once the I/O is complete, the application must resynchronize with the adlgpib driver.
Resynchronization is accomplished by using one of the following three functions:

ibwait If the returned ibsta mask has the CMPL bit set, the driver and application are
resynchronized.

ibnotify If the ibsta value passed to the ibnotify callback contains CMPL, the driver and application
are resynchronized.

ibstop The I/O is canceled; the driver and application are resynchronized.
ibonl The I/O is canceled and the interface is reset; the driver and application are

resynchronized.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibwrta (int ud, const void *buf, long count)

Visual Basic
ilwrta (ByVal ud As Integer, ByVal buf As String, ByVal cnt As Long) As Integer
or
call ibwrta (ByVal ud As Integer, ByVal buf As String)

@ Parameter

ud : device unit descriptor
buf : the buffer contains data bytes to sent
cnt : number of data bytes to sent

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EADR, EABO, EBUS, ECIC, EDVR, EOIP, ENEB, ENOL

2.2.39 ibwrtf

@ Description

Write data to a device from a file.
If ud is a device descriptor, ibwrtf addresses the GPIB and writes all of the bytes from the file flname
to a GPIB device. The operation terminates normally when all of the bytes have been sent. The

40 • Function Description

operation terminates with an error if all of the bytes could not be sent within the timeout period. The
actual number of bytes transferred is returned in the global variable ibcntl.
If ud is a board descriptor, ibwrtf writes all of the bytes of data from the file flname to a GPIB device.
A board-level ibwrtf assumes that the GPIB is already properly addressed. The operation terminates
normally when all of the bytes have been sent. The operation terminates with an error if all of the
bytes could not be sent within the timeout period, or if the board is not CIC, the CIC sends a Device
Clear on the GPIB. The actual number of bytes transferred is returned in the global variable ibcntl.

@ Support Level

Board / Device level

@ Syntax

Microsoft C/C++ and Borland C++
Int ibwrtf(int ud, const char *file_path)

Visual Basic
ilwrtf (ByVal ud As Integer, ByVal filename As String) As Integer
or
call ibwrtf (ByVal ud As Integer, ByVal filename As String)

@ Parameter

ud : the device descriptor.
filename : the name of the file containing the data to write.

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EABO, EADR, EBUS, ECIC, EDVR, EFSO, ENEB, EOIP

Function Description • 41

2.3 Multi-Device IEEE 488.2 Function Reference

2.3.1 AllSpoll

@ Description

Perform serial poll one or more devices. The poll responses are stores in resultList and the number
of responses in ibcntl.

@ Syntax

Microsoft C/C++ and Borland C++
void AllSpoll(int board_desc, const Addr4882_t addressList[], short resultList[])

Visual Basic
call AllSpoll (ByVal board_desc As Integer, addressList () As Integer, resultList () As Integer)

@ Parameter

board_desc : board id
addressList : the list of device addresses that is terminated by NOADDR
resultList : the list of serial poll response bytes corresponding to device addresses in addrlist

@ Possiable Error Codes

EARG, EABO, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.2 DevClear

@ Description

Send the Selected Device Clear (SDC) GPIB message to clear a device. If address is the constant
NOADDR, the Universal Device Clear (DCL) message is sent to all devices.

@ Syntax

Microsoft C/C++ and Borland C++
void DevClear(int board_desc, Addr4882_t address)

Visual Basic
call DevClear(ByVal board_desc As Integer, ByVal address As Integer)

@ Parameter

board_desc : board id
address : the device address wishing to be cleared

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.3 DevClearList

@ Description

Clear mutiple devices. If address is the constant NOADDR, the Universal Device Clear (DCL)
message is sent to all devices.

@ Syntax

Microsoft C/C++ and Borland C++

42 • Function Description

void DevClearList (int board_desc, const Addr4882_t addressList[])

Visual Basic
call DevClearList (ByVal ud As Integer, addressList () As Integer)

@ Parameter

board_desc : board id
addressList : a list of the device addresses terminated by NOADDR wishing to be cleared

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.4 EnableLocal

@ Description

Enable operations from the front panel of devices by sending the Go To Local (GTL) GPIB message
to multiple devices. This places the devices into local mode. If addrlist contains only the constant
NOADDR, the Remote Enable (REN) GPIB line is unasserted.

@ Syntax

Microsoft C/C++ and Borland C++
void EnableLocal(int board_desc, const Addr4882_t addressList[])

Visual Basic
call EnableLocal(ByVal ud As Integer, addressList () As Integer)

@ Parameter

board_desc : board id
addressList : a list of the device addresses terminated by NOADDR wishing to go to local.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ESAC

2.3.5 EnableRemote

@ Description

Enable remote GPIB programming for devices by asserting the Remote Enable (REN) GPIB line.
The devices are put into a listen-active state.

@ Syntax

Microsoft C/C++ and Borland C++
void EnableRemote (int board_desc, const Addr4882_t addressList[])

Visual Basic
call EnableRemote (ByVal ud As Integer, addressList () As Integer)

@ Parameter

board_desc : board id
addressList : a list of the device addresses terminated by NOADDR wishing to go to local.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ESAC

2.3.6 FindLstn

Function Description • 43

@ Description

Find listening devices on the GPIB bus. This function tests all of the primary addresses in padlist as
follows: If a device is present at a primary address given in padlist, the primary address is stored in
resultlist. Otherwise, all secondary addresses of the primary address are tested, and the addresses
of any devices found are stored in resultlist. ibcntl contains the actual number of addresses stored in
resultlist.

@ Syntax

Microsoft C/C++ and Borland C++
void FindLstn(int board_desc, const Addr4882_t padList[], Addr4882_t resultList[], int

maxNumResults)

Visual Basic
call FindLstn (ByVal ud As Integer, padList () As Integer, resultList () As Integer, ByVal

maxNumResults As Integer)

@ Parameter

board_desc : board id
padList : a list of the gpib primary addresses terminated by NOADDR.
resultList : addresses of all listening devices found by FindLstn.
maxNumResults : maximum count of entries that can be placed in resultList.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ETAB

2.3.7 FindRQS

@ Description

Serial poll the devices to determine which device is requesting service, until it finds a device which
is requesting service. The serial poll response byte is placed in result. ibcntl contains the index of
the device requesting service in addrList. If none of the devices are requesting service, the index
corresponding to NOADDR in addrlist is returned in ibcntl and ETAB is returned in iberr.

@ Syntax

Microsoft C/C++ and Borland C++
void FindRQS (int board_desc, const Addr4882_t addressList[], short *result)

Visual Basic
call FindRQS (ByVal ud As Integer, addressList () As Integer, result As Integer)

@ Parameter

board_desc : board id
addressList : a list of the gpib primary addresses terminated by NOADDR.
result : Serial poll response byte of the device that is requesting service.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ETAB

2.3.8 PassControl

@ Description

44 • Function Description

Pass control to another GPIB device with Controller capability by sending the Take Control (TCT)
GPIB message to the device. The device becomes Controller-In-Charge (CIC) and the interface is
no longer CIC.

@ Syntax

Microsoft C/C++ and Borland C++
void PassControl(int board_desc, Addr4882_t address)

Visual Basic
call PassControl (ByVal board_desc As Integer, ByVal address As Integer)

@ Parameter

board_desc : board id
address : a list of the gpib primary addresses terminated by NOADDR.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.9 PPoll

@ Description

Perform a parallel poll. The board sents command to each device (see PPollConfig and
PPollUnconfig). The Controller can use parallel polling to obtain one-bit, device-dependent status
messages from up to eight devices simultaneously

@ Syntax

Microsoft C/C++ and Borland C++
void PPoll(int board_desc, short *result)

Visual Basic
call Ppoll(ByVal board_desc As Integer, result As Integer)

@ Parameter

board_desc : board id
result : The parallel poll result.

@ Possiable Error Codes

EBUS, ECIC, EDVR, EOIP, ENEB

2.3.10 PPollConfig

@ Description

Configures the device to respond to parallel polls by asserting or not asserting the GPIB data line,
dataline. If lineSense equals the individual status (ist) bit of the device, the assigned GPIB data line
is asserted during a parallel poll. Otherwise, the data line is not asserted during a parallel poll. The
Controller can use parallel polling to obtain 1-bit, device-dependent status messages from up to
eight devices simultaneously.

@ Syntax

Microsoft C/C++ and Borland C++
void PPollConfig (int board_desc, Addr4882_t address, int dataLine, int lineSense)

Visual Basic

Function Description • 45

call PpollConfig (ByVal ud As Integer, ByVal address As Integer, ByVal dataLine As Integer, ByVal
lineSense As Integer)

@ Parameter

board_desc : board id
address : address of the device to be configured.
dataLine : Data line (a value in the range of 1 to 8) on which the device responds to parallel

polls.
lineSense : Sense (either 0 or 1) of the parallel poll response.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.11 PPollUnConfig

@ Description

Unconfigures the device to respond to parallel polls. If addrlist contains only the constant NOADDR,
the Parallel Poll Unconfigure (PPU) GPIB message is sent to all GPIB devices. The devices
unconfigured by this function do not participate in subsequent parallel polls.

@ Syntax

Microsoft C/C++ and Borland C++
void PPollUnconfig (int board_desc, const Addr4882_t addressList[])

Visual Basic
call PpollUnconfig(ByVal ud As Integer, addressList () As Integer)

@ Parameter

board_desc : board id
addressList : A list of device addresses that is terminated by NOADDR.

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.12 RcvRespMsg

@ Description

Read data bytes from a device. RcvRespMsg assumes that the interface is already in its listen-
active state and a device is already addressed to be a Talker. Data are read until either count data
bytes have been read or the termination condition is detected. If the termination condition is
STOPend, the read is stopped when a byte is received with the EOI line asserted. Otherwise, the
read is stopped when the 8-bit EOS character is detected. The actual number of bytes transferred is
returned in the global variable, ibcntl.

@ Syntax

Microsoft C/C++ and Borland C++
void RcvRespMsg (int board_desc, void *buffer, long count, int termination)

Visual Basic
call RcvRespMsg (ByVal ud As Integer, buf As String, ByVal termination As Integer)

@ Parameter

board_desc : board id

46 • Function Description

buffer : the buffer which stores the read data.
count : Number of bytes read.
termination : Description of the data termination mode (STOPend or an 8-bit EOS character).

@ Possiable Error Codes

EABO, EADR, EARG, ECIC, EDVR, EOIP, ENEB

2.3.13 ReadStatusByte

@ Description

Conduct serial polling single device. If bit 6 (hex 40) of the response is set, the device is requesting
service.

@ Syntax

Microsoft C/C++ and Borland C++
void ReadStatusByte (int board_desc, Addr4882_t address, short *result)

Visual Basic
call ReadStatusByte (ByVal ud As Integer, ByVal addr As Integer, result As Integer)

@ Parameter

board_desc : board id
address : device address.
result : the serial poll response byte.

@ Possiable Error Codes

EABO, EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.14 Receive

@ Description

Reads data from a device into the user specified buffer.
Receive addresses the device described by address to talk and the interface to listen, reads up to
count bytes of data, and places the data into the buffer. The operation terminates normally when
count bytes have been received or the termination condition is detected. If the termination condition
is STOPend, the read is stopped when a byte is received with the EOI line asserted. Otherwise, the
read is stopped when an 8-bit EOS character is detected. The actual number of bytes transferred is
returned in the global variable, ibcntl.

@ Syntax

Microsoft C/C++ and Borland C++
void Receive(int board_desc, Addr4882_t address, void *buffer, long count, int termination)

Visual Basic
call Receive(ByVal ud As Integer, ByVal addr As Integer, buf As String, ByVal termination As

Integer)

@ Parameter

board_desc : board id
address : address of the device to read data.
buffer : the buffer which stores the read data
termination : the data termination mode (STOPend or an EOS character)

Function Description • 47

@ Possiable Error Codes

EABO, EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.15 ReceiveSetup

@ Description

Set a device to be a Talker and the interface to be a Listener. This funciton is usually followed by a
call to RcvRespMsg to transfer data from the device to the interface. This call is useful to make
multiple calls to RcvRspMsg; it eliminates the need to readdress the device to receive every block of
data.

@ Syntax

Microsoft C/C++ and Borland C++
void ReceiveSetup(int board_desc, Addr4882_t address)

Visual Basic
call ReceiveSetup(ByVal ud As Integer, ByVal addr As Integer)

@ Parameter

board_desc : board id
address : address of the device addressed to be a talker

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.16 ResetSys

@ Description

Reset and initialize devices. It includes three steps. The first step resets the GPIB by asserting the
Remote Enable (REN) line and then the Interface Clear (IFC) line. The second step clears all of the
devices by sending the Universal Device Clear (DCL) GPIB message. The final step causes devices
to perform device-specific reset and initialization. This step is accomplished by sending the
message "*RST\n" to the devices described by addrlist.

@ Syntax

Microsoft C/C++ and Borland C++
void ResetSys (int board_desc, const Addr4882_t addressList[])

Visual Basic
call ResetSys (ByVal ud As Integer, addressList () As Integer)

@ Parameter

board_desc : board id
addressList : list of the device addresses that is terminated by NOADDR

@ Possiable Error Codes

EABO, EARG, EBUS, ECIC, EDVR, ENOL, EOIP, ENEB, ESAC

2.3.17 Send

@ Description

Write data to a device from a data buffer.

48 • Function Description

The operation terminates normally when count bytes have been sent. The last byte is sent with the
EOI line asserted if eotmode is DABend. The last byte is sent without the EOI line asserted if
eotmode is NULLend. If eotmode is NLend then a new line character ('\n') is sent with the EOI line
asserted after the last byte of buffer. The actual number of bytes transferred is returned in the global
variable, ibcntl.

@ Syntax

Microsoft C/C++ and Borland C++
void Send (int board_desc, Addr4882_t address, const void *buffer, long count, int eot_mode)

Visual Basic
call Send (ByVal ud As Integer, ByVal addr As Integer, ByVal buf As String, ByVal eot_mode As

Integer)

@ Parameter

board_desc : board id
address : device address
buffer : the data bytes to be sent
count : data count
eot_mode : the data termination mode: DABend, NULLend, or NLend

@ Possiable Error Codes

EABO, EARG, EBUS, ECIC, EDVR, ENOL, EOIP, ENEB

2.3.18 SendCmds

@ Description

Send GPIB command. The number of command bytes transferred is returned in the global variable
ibcntl

@ Syntax

Microsoft C/C++ and Borland C++
void SendCmds (int board_desc, const void * cmdbuf, long count)

Visual Basic
call SendCmds(ByVal ud As Integer, ByVal cmdbuf As String)

@ Parameter

board_desc : board id
cmdbuf : Command bytes to be sent
count : data count

@ Possiable Error Codes

EABO, ECIC, EDVR, ENOL, EOIP, ENEB

2.3.19 SendDataBytes

@ Description

Send number of bytes from the buffer to devices. SendDataBytes assumes that the interface is in
talk-active state and that devices are already addressed as Listeners on the GPIB. The last byte is
sent with the EOI line asserted if eotmode is DABend; the last byte is sent without the EOI line
asserted if eotmode is NULLend. If eotmode is NLend then a new line character ('\n') is sent with

Function Description • 49

the EOI line asserted after the last byte. The actual number of bytes transferred is returned in the
global variable, ibcntl.

@ Syntax

Microsoft C/C++ and Borland C++
void SendDataBytes (int board_desc, const void *buffer, long count, int eotmode)

Visual Basic
call SendDataBytes(ByVal ud As Integer, ByVal buf As String, ByVal term As Integer)

@ Parameter

board_desc : board id
buffer : the data bytes to be sent
count : data count
eot_mode : the data termination mode: DABend, NULLend, or NLend

@ Possiable Error Codes

EABO, EADR, EARG, EBUS, ECIC, EDVR, ENOL, EOIP, ENEB

2.3.20 SendList

@ Description

Send data bytes to multiple GPIB devices. SendList addresses the devices described by addrlist to
listen and the interface to talk and then data from buffer are sent to the devices. The last byte is
sent with the EOI line asserted if eotmode is DABend. The last byte is sent without the EOI line
asserted if eotmode is NULLend. If eotmode is NLend, a new line character ('\n') is sent with the
EOI line asserted after the last byte. The actual number of bytes transferred is returned in the global
variable, ibcntl.

@ Syntax

Microsoft C/C++ and Borland C++
void SendList(int board_desc, const Addr4882_t addressList[], const void *buffer, long count, int

eotmode)

Visual Basic
call SendList(ByVal ud As Integer, addressList () As Integer, ByVal buf As String, ByVal term As

Integer)

@ Parameter

board_desc : board id
addresslist : list of device addresses to send data
buffer : the data bytes to be sent
count : data count
eot_mode : the data termination mode: DABend, NULLend, or NLend

@ Possiable Error Codes

EABO, EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.21 SendIFC

@ Description

50 • Function Description

Reset the GPIB by sending interface clear. SendIFC is used as part of GPIB initialization. It forces
the interface to be Controller-In-Charge of the GPIB. It also ensures that the connected devices are
all un-addressed and that the interface calls of the devices are in their idle states.

@ Syntax

Microsoft C/C++ and Borland C++
void SendIFC(int board_desc)

Visual Basic
call SendIFC(ByVal ud As Integer)

@ Parameter

board_desc : board id

@ Possiable Error Codes

 ENEB, ESAC, EDVR, EOIP

2.3.22 SendLLO

@ Description

Send the Local Lockout (LLO) message to all devices. While Local Lockout is in effect, only the
Controller-In-Charge can alter the state of the devices by sending appropriate GPIB messages.
SendLLO is reserved for use in unusual local/remote situations. In the typical case of placing the
devices in Remote With Local Lockout, use SetRWLS.

@ Syntax

Microsoft C/C++ and Borland C++
void SendLLO (int board_desc)

Visual Basic
call SendLLO (ByVal ud As Integer)

@ Parameter

board_desc : board id

@ Possiable Error Codes

 EBUS, ECIC, ENEB, ESAC, EDVR, EOIP

2.3.23 SendSetup

@ Description

Set up devices to receive data. SendSetup makes the devices described by addressList listen-
active and makes the interface talk-active. This call is usually followed by SendDataBytes to actually
transfer data from the interface to the devices. SendSetup is particularly useful to set up the
addressing before making multiple calls to SendDataBytes; it eliminates the need to readdress the
devices for every block of data.

@ Syntax

Microsoft C/C++ and Borland C++
void SendSetup (int board_desc, const Addr4882_t addressList[])

Visual Basic
call SendSetup(ByVal ud As Integer, addrs() As Integer)

@ Parameter

Function Description • 51

board_desc : board id
addresslist : list of device addresses that is terminated by NOADDR

@ Possiable Error Codes

EABO, EARG, EBUS, ECIC, EDVR, EOIP, ENEB

2.3.24 SetRWLS

@ Description

Place devices in Remote With Lockout State. SetRWLS places the devices described by addrlist in
remote mode by asserting the Remote Enable (REN) GPIB line. Then those devices are placed in
lockout state by the Local Lockout (LLO) GPIB message. You cannot program those devices locally
until the Controller-In-Charge releases the Local Lockout by way of the EnableLocal call.

@ Syntax

Microsoft C/C++ and Borland C++
void SetRWLS (int board_desc, const Addr4882_t addressList[])

Visual Basic
call SetRWLS (ByVal ud As Integer, addressList () As Integer)

@ Parameter

board_desc : board id
addresslist : list of device addresses that is terminated by NOADDR

@ Possiable Error Codes

EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ESAC

2.3.25 TestSRQ

@ Description

Check the current state of the GPIB Service Request (SRQ) line. If SRQ is asserted, result contains
a non-zero value. Otherwise, result contains a zero. Use TestSRQ to get the current state of the
GPIB SRQ line. Use WaitSRQ to wait until SRQ is asserted.

@ Syntax

Microsoft C/C++ and Borland C++
void TestSRQ (int board_desc, short *result)

Visual Basic
call TestSRQ (ByVal ud As Integer, result As Integer)

@ Parameter

board_desc : board id
result : State of the SRQ line: non-zero if the line is asserted, zero if the line is not asserted.

@ Possiable Error Codes

EDVR, EOIP, ENEB

2.3.26 TestSys

@ Description

52 • Function Description

Make the devices to conduct self tests. TestSys sends the "*TST?" message to the devices. The
"*TST?" message makes them to conduct their self-test procedures. A 16-bit test result code is read
from each device. A test result of 0\n indicates that the device passed its self test. Refer to the
documentation that came with the device to determine the meaning of the failure code. Any other
value indicates that the device failed its self test. If the function returns without an error (that is, the
ERR bit is not set in ibsta), ibcntl contains the number of services that failed. Otherwise, the
meaning of ibcntl depends on the error returned. If a device fails to send a response before the
timeout period expires, a test result of ? is reported for it, and the error EABO is returned.

@ Syntax

Microsoft C/C++ and Borland C++
void TestSys (int board_desc, Addr4882_t * addrlist, short resultList[])

Visual Basic
call TestSys (ByVal ud As Integer, addrlist () As Integer, resultList () As Integer)

@ Parameter

board_desc : board id
addrlist : a list of device addresses terminated by NOADDR.
resultList : A list of test results; each entry corresponds to an address in addrlist.

@ Possiable Error Codes

EABO, EARG, EBUS, EDVR, ECIC, EOIP, ENEB, ENOL

2.3.27 Trigger

@ Description

Send the Group Execute Trigger (GET) GPIB message to single device. If address is the constant
NOADDR, the GET message is sent to all devices that are currently listen-active on the GPIB.

@ Syntax

Microsoft C/C++ and Borland C++
void Trigger(int board_desc, Addr4882_t address)

Visual Basic
call Trigger (ByVal ud As Integer, ByVal address As Integer)

@ Parameter

board_desc : board id
address : the address of the device to be triggered.

@ Possiable Error Codes

EARG, EBUS, EDVR, ECIC, EOIP, ENEB

2.3.28 TriggerList

@ Description

Send the Group Execute Trigger (GET) GPIB message to multiple devices. If the only address in
addrlist is the constant NOADDR, no addressing is performed and the GET message is sent to all
devices that are currently listen-active on the GPIB.

@ Syntax

Microsoft C/C++ and Borland C++

Function Description • 53

void TriggerList (int board_desc, const Addr4882_t addressList[])

Visual Basic
call TriggerList (ByVal ud As Integer, addressList () As Integer)

@ Parameter

board_desc : board id
addressList : a list of device addresses terminated by NOADDR.

@ Possiable Error Codes

EARG, EBUS, EDVR, ECIC, EOIP, ENEB

2.3.29 WaitSRQ

@ Description

Wait until a device asserts the GPIB Service Request (SRQ) line. When WaitSRQ returns, result
contains a non-zero if SRQ is asserted. Otherwise, result contains a zero. Use TestSRQ to get the
current state of the GPIB SRQ line. Use WaitSRQ to wait until SRQ is asserted.

@ Syntax

Microsoft C/C++ and Borland C++
void WaitSRQ(int board_desc, short *result)

Visual Basic
call WaitSRQ (ByVal ud As Integer, result As Integer)

@ Parameter

board_desc : board id
result : State of the SRQ line: non-zero if line is asserted, zero if line is not asserted.

@ Possiable Error Codes

EDVR, EOIP, ENEB

54 • Appendix

Appendix A Status Codes

All calls update a global status word, ibsta, which contains information about the state of the GPIB
and your GPIB hardware. You can check for errors after each call using the ibsta ERR bit.
ibsta is a 16-bit value. A bit value of one (1) indicates that a certain condition is happened. A bit value
of zero (0) indicates that the condition is not happened.

Mnemoni
c

BitPos. HexValue Type Description

ERR 15 8000 device, board GPIB error
TIMO 14 4000 device, board Timeout
END 13 2000 device, board END or EOS detected
SRQI 12 1000 board SRQ interrupt occurred
RQS 11 800 device Device requesting service
SPOLL 10 400 board Board has been serial polled

by Controller
EVENT 9 200 board DCAS, DTAS, or IFC event

has occurred
CMPL 8 100 device, board I/O completed
LOK 7 80 board Lockout State
REM 6 40 board Remote State
CIC 5 20 board Controller-In-Charge
ATN 4 10 board Attention is asserted
TACS 3 8 board Talker
LACS 2 4 board Listener
DTAS 1 2 board Device Trigger State
DCAS 0 1 board Device Clear State

Appendix • 55

Appendix B Error Codes

The following table lists the NI-488.2 error codes. Remember that the error variable is meaningful only
when the ERR bit in the status variable, ibsta, is set. For a detailed description of each error and
possible solutions, click on the error mnemonic.

ErrorMnemonic iberrValue Meaning
EDVR 0 Operating system error
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument
ESAC 5 GPIB board not System Controller as required
EABO 6 I/O operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EDMA 8 DMA error
EOIP 10 Asynchronous I/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position
ETAB 20 Table problem

